
IS ORC 69-21
AUGUST 1969

•■■ ■:

'....■■■■iJ;

iV,:^

A BRANCH AND BOUND METHOD
FOR OPTIMAL FAULT FINDING

by

RICHARD W. BUHERWORTH

i yM

00

1
, ■■ v *

OPERATIONS
RESEARCH

CENTER
/ •"-•^»■:;,l.

COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA - BERKELEY

IX

' --■'•■- -- ': f-^.t..-, ■■ ■ - .-- -■•-*: ■

 i i.i.i ,<rmmmKrrrr:\"[rr.'.Trr^::i'J..i'-\:.,!:.vj^.sii'~^Tta

A BRANCH-AND-BOUND METHOD FOR FAULT FINDING

by

Richard W. Butterworth
Operations Research Center

University of California, Berkeley

AUGUST 1969 ORC 69-21

This research has been partially supported by the U. S. Army Research
Office-Durham under Contract DA-31-124-ARO-D-331 and the National
Science Foundation under Grant GK-1684 with the University of
California. Reproduction in whole or in part is permitted for any
purpose of the United States Government.

i^-aH3aHMHnHaBHBaBBl^BHtfSaHBHHHHHiMUBaaaSfllUttMiaMi

-rfr-TTTTT-r"!—rTT!r-TT--r"rTTTrT~ : .J'M,..;:!!,';™^ ^./,,_""™^.":TT .^...'...T.;.1.,. _11?

ACKNOWLEDGEMENT

The author wishes to thank Professors E. Lawler and R. Wolff

for their interest in and guidance of this writing. In addition, the

author's wife deserves thanks for her clerical and moral support.

fatft

 "■I "^^^^
^

ABSTRACT

The problem Is that of optimally testing a coherent system
to learn some characteristic of it, for example, whether it
is operating or not. A branch and bound and a dynamic
programming solution are given, as well as a comparison of
computer computation times for both. Several specific
models with analytical solutions are also presented.

The general problem is posed abstractly In Chapter 1, and
two solution methods are detailed. Briefly, we are
presented with n binary-valued random variables and a
function of the vector of these random variables. The
object is to learn the value of the function by testing
some of the random variables and an optimal testing policy
uses the minimum average time to complete its testing. The
first solution method given is a dynamic programming type as
this is easier to formulate. The second is a branch and
bound method; its description is somewhat more involved.
Chapter 2 is concerned with formulating general fault
finding models which can be cast as problems solved by the
methods presented in Chapter 1. Also included is some
computational experience comparing the effectiveness of both
solution methods for one of the models described. Chapter 3
gives several specific fault finding problems and analytical
results for them. This chapter is developed independently
of Chapter 1, and relies on Chapter 2 only for its initial
discussion of coherent systems.

iltttfMUMaW

WPW—J^y—T^g1^!^^^, -ii .. ■ .. . , i ^^

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENT

CHAPTER I: DECISION PROBLEMS 1

CHAPTER 2: GENERAL FAULT FINDING MODELS FOR COHERENT SYSTEMS ... 23

CHAPTER 3: ANALYTICAL RESULTS FOR (k/n) SYSTEMS 37

SUMMARY 63

BIBLIOGRAPHY 65


~~~-—?—- ■ ■ ..■l ::•..■ ■ irv~L7. 

CHAPTER 1 

DECISION PROBLEMS 

Introduction 

Decision problems occur when one is presented with the task of de- 

termining the value of a known function of n random variables, in the 

following circumstance. We suppose that the n random variables are 

binary, each one taking the value zero or one. There is a time t. ^ 0 

incurred to determine the value of the ith random variable. We remark 

that, of course, t. could be interpreted as any other measure of the 

cost to determine the value of the ith random variable. A procedure, or 

policy, for determinirr. the value of the known function is a rule which 

tells its user which random variable to test next, based on the results 

of the previously made tests, or to stop, if the known function can have 

only one value, almost surely, given the results of tests made up to 

this point. 

When the function is one to one, determining its value is equivalent 

to determining the value of every random variable.  In general, however, 

the function is many to one. The collection of inverse images of each 

functional value forms a partition of the sample space; determining the 

function's value is then equivalent to identifying the set of the parti- 

tion in which the vector of random variables resides. 

There are various criteria for comparing policies; we will deal pri- 

marily with the expected time until the testing process stops and the 

value of the known function has been determined almost surely. A straight- 

forward dynamic programming solution and a branch and bound type solution 

are presented, as well as an example illustrating the branch and bound 

algorithm. The chapter is concluded with a brief discussion of another 

criterion. 

——i —M———W—I — 



mmmmmm^mmmmmmmmm^^ 

The generality of this model   of decision problems  suggests that a 

wide variety of real  problems can be formulated  in these  terms.    One 

such problem  is that of converting "decision tables", a  format  for computer 

programming,   into a  set of machine  instructions  logically equivalent  to 

the given decision table.     See,  for example,  [Reinwald and Soland,  1966] 

and  [Reinwald and Soland,   196?].     Some fault  finding problems can also be 

formulated  this way, which  is  the  topic of Chapter 2.    A  frequent  sugges- 

tion as a  real  application   is clinical diagnosis. 

A.    Definitions and Notation 

We say    (Y. Y    ; A. ,   ... , A.)     is a n-th order decision problem 

when: 

(i)     Y,,   ..., Y      are binary  (0 or I)  random variables 
i n 

and 

(II)   {A,,   .... AdJ     is a partition of    lO.l)" -{((«, 'V''"! 

■ 0    or    I   ,   i  »  1,   ...,  n}   . 

The correct action is k , a random variable, defined by (Y,, ..., Y ) 

€ A.  almost surely. We put Y ■ (Y. Y ) and write Y 6 A  a.s. 

The object is to determine the correct action almost surely in minimum 

expected time by successively determining the values of the Y.'s. The 

"correct action" should be thought of as the value of the function men- 

tioned in the introduction and should not be confused with a policy for 

determining it. This terminology is motivated by applications, such as 

In Chapter 2. 

To determine, or test, Y.  requires time t. ä 0 .  The process 

stops when we are almost sure of the value of random variable k . We 

say the state of the problem is  sa(s.,...,s)€{-l,0, 1}  when, 

if s. ■ -I  then Y. has not been tested, while if s. = 0 or 1 then 
J J J 



 :" ::-•':'-   .   uwai 

Y. has been tested and its value is s. .  In particular, set  s = 
J J 

(-1, ..., -]) , the initial state when no Y.  has been tested.  We de- 

fine s ■ {v. « s. j J 9 s, f* -!} , the event in the underlying probability 

space corresponding to the state of knowledge s . 

A policy for  (Y. , ..., Y ; A. , ... , A.)  is a rule which tells its 

user which Y.  to test next, based on the state of the problem.  Speci- 

fically, to use policy n when in state s means to test V   /  \   f '^ 

TT(S) =1,2 n , and to stop if TT(S) ■ 0 , Indicating the correct 

action is almost surely determined. We find it formally convenient to 

require that policies stop at states s for which P(s) ■ 0 , and at 

those states when the correct action is known, almost surely. Accordingly, 

a pol icy wi 11 be any function TT on {-1,0,1}  to {0, I n} 

such that for states s » (s, s ) . 
M'   ' n7 

(1) P(s) » 0 «> TT(S) = 0 

(2) P(s) > 0 -> 

(a) TT(S) = 0 <=> 3k 9 PtY 6 Ak j s} = I and 

(b) TT(S) - j > 0 -> SJ - -I . 

We will denote by T (s) the (conditional) expected time to deter- 

mine the correct action, beginning in state s and following policy TT . 

Specifically, 

TjJs) - expected time until process stops, beginning 

in state s and using policy n , with respect 

to the conditional distribution ?{• | s} , 

- 0  if P(s) - 0 . 

There are, of course, various criteria for comparing policies.  Our 

interest here is in the expected time to determine the correct action, 

beginning in the initial state s    Accordingly, we will call policy 



_- 

TT      optimal   if  it minimizes    T  (s )    among all   policies, 

B.     Dynamic Programming Solution 

Let us enrich the problem by assuming the time  to test    Y.    depends 

on  the state    s    of the problem when the test  is performed, say    t(j,  s)   . 

This being the case, we have  for all  states    s 3 P(s) > 0  ,  for all 

policies    TT 3 TT(S) - j > 0   , T^s) - t(j,  s) + PCYJ = 0  |  slips') + 

PCYJ =  1   1  s}Tn(s")   , where    s' -  (s, 0,.   ...,  sn)    and    s" = 

(s. ,   ...,  1.,   ...,  s )   .     This provides the basis for  the usual  dynamic 

programming solution to finding an optimal  policy.    Let  the optimal  value 

function    be    T(s) - Min  {^(s)   |  policies n]   .     Then 

T(s) 

0 if  3 pol icy TT 3 TT(S) "0 , i.e., which stops at s ; 
otherwise 

Min  (t(j, s) + PlY. - 0 1 s}T(s') + PfY. - 1 | s}T(s")) 
J3S.-1 J J 

where s' • (s. 0., .... s,,) and s" ■ (s.  
J J 

... sn) 

This functional equation can be solved by considering states s with 

successively more occurrences of -I. An optimal policy is also generated 

in the usual way. 

The primary restriction to using this solution is that the function- 

al equation must be used once for each state, indicating that the compu- 

tational complexity of the algorithm grows roughly as 3 • On the other 

hand, by making these computations we have really solved a family of 

related problems, each one an extension of the original. This bonus is 

a common occurrence in the solution of problems via dynamic programming. 

The extension is simply the assumption that the cost of determining Y. 

can be allowed to depend on the tests previously made and their results, 

namely the current state of the problem. Also, we see that an optimal 



■■■ÄÜU  

policy   IT      recovered from the  functional  equation above really satisfies: 

Vs :  T    (s) « Min T (s)   .    That  is, TT      is optinal  uniformly for be- n TT o 
O TT 

ginning in any state s . This is stronger than simply requiring it 

minimize T (s ) .  If, during the use of this optimal policy, some more 

information were to become available, then the problem need not be re- 

solved for a new initial state; one can continue to* use the optimal policy 

generated by the functional equation, as it will be optimal for this 

newly created problem. 

C.  Branch and Bound Solution 

The decision problem has a "branch and boMnd" solution which, like 

any solution of this type, is potentially an enumeration of all feasible 

solutions. Such complexity is usually not realized and this solution 

provides a reasonable alternative to the dynamic programming solution. 

In order to describe the branch and bound scheme precisely, the 

notion of a policy tree will be defined. Roughly, a policy tree is a 

partial specification of a testing policy.  For example, the policy tree 

{(s , i)] is the partial specification TT(S
0
) «I , so we say this policy 

tree represents all policies which begin by testing Y.  first (in state 

s ). Thus, policy trees become the device for "branching" at each step. 

The "bounding" of policy trees, that is, a lower bound on T (s )  for 

all TT represented by some policy tree, is obtained from a lower bound 

on the probability that each Y. will be tested. An appealing feature 

of the bound obtained occurs when the algorithm branches on a particular 

policy tree by making its specification more complete in various ways 

and hence creating a collection of related trees; the lower bounds for 

the newly created trees are computed by simply adding a quantity to the 

lower bound for the former tree being expanded. These incremental 



P" 

quantities also provide an  upper  bound on    T    (s  )     for an optimal  policy 

n     .     This upper bound  is  used  to eliminate some policy  trees  from con- 

sideration directly.    While  shuch  trees would  never be expanded  in the 

normal   course of computation anyway,  their very presence consumes  storage 

and  time  in needless manipulation. 

The basic form of our algorithm is the content of [Soland 1966],  except 

for  the probabilistic  interpretation of the  lower  bounds and the compu- 

tation and use of upper bounds. 

A policy tree will   be a partial  specification  for policies,  and will 

be the  device which allows  us  to use a branch and  bound  scheme.    Because 

of the   inductive way this device will  be used, we will  define a policy 

tree   inductively.    A pol icy tree  is a set   4.   of ordered pairs    (s,   i) 

of states    s    and  integers     i   ,  0 £ i  £ n   ,  such  that: 

Basis:    <Z =  [(s   ,   i)}     is a policy tree,  provided  there exists a policy 

TT    such that    TI(S  )  »  i   . 

Induction:     If    ^   is a policy tree and     (s,   \)  €. 4    such  that    i > 0    and, 

for    s' »  (Sj 0. sn)    and    s" =   (Sj 1......  sn)   , 

neither (s1. j)  nor (s". k) are elements of &   for any 

j and k , then « U [(s1. h') , (s", h")}  is a policy tree 

for all pairs h' , h" such that there exists a policy TT 

with nCs') - h' and n(s") » h" . 

We need to define several quantities related to policy trees. First, 

the policy tree ^ will be said to represent the policy TT when, for 

all  (s, 1) € ^ , we have n(s) ■ I . In this way, policy trees partially 

specify a policy. Notice that the larger the policy tree is, the fewer 

policies it represents.  When a policy tree is as large as possible, that 



™iÄ-i. ' SUV~,VHBMIBOVHMBBHMaiHiViHHMBB-)iMHMMaM 

7 

is, when   it cannot  be extended according  to the   induction  step of the 

definition above, we  say  it  is a complete policy tree.     Equivalently,  a 

policy tree  is complete   if it  is set maximal   among all  policy trees.    We 

will   see below that complete policy trees effectively represent  only one 

policy.    One final   notion  is that of a  terminal  element of a policy  tree. 

The element     (s,   J)  € ^   i s a  terminal   element  of   4    if    i = 0    or,   i f 

i > 0   ,  then neither     (s1, j)     nor    (s",  k)     are elements of   Ä    for any 

j    and    k   , where    s' «  (s. ,  ... , 0.,   ... ,  s  )    and    s" =  (s. ,   .. . ,   I s ) 

Elements of   4   which are not terminal   are cal led  interior.    We  see  the 

terminal  elements     (s,   i)    of a policy tree  for which    i > 0    are exactly 

those referred  to  in the  induction  step of the policy tree definition. 

We continue with  some basic properties of policy trees. 

Lemma  I:     Every policy  tree represents at   least one policy. 

Lemma  2:     A policy  tree   is complete <=> for all   terminal   elements     (s,   I) 

of   Ä t we have     i  » 0 »> all  policies  represented by   %   are equivalent 

to the user,   i.e.,   implementation of any two policies  represented by  ^ 

a.s.   lead  to the same sequence of tests. 

Lemma 3:     Let     Ä   be any policy tree and    rr    be any policy represented by 

A .    Then 

(1) Tfs0)  - EP(S) t. + EP(S) TJS) 
(s,   i)   interior (s,   i)   terminal 
elements of 4 elements of ^ 

Proofs:     Lemmas   I  and  2 are easily shown by  induction.     Lemma 3.  also 

shown by  induction,   is proven here.    We will   show that Equation   (I)  holds 

for all  policies  represented by    4   by  showing   inductively that   the class 

of policy trees  for which  (I)  holds contains all policy trees. 

■ I —f h"--       ■   'V-    ■      ■■     •^■^^M^.'   - ,,™.-(»-.-     w-    »-^^ 



, 1.1. .I,..—I.I Ml,   „,.,    ■ 

8 

Basis:  If ^ » [(s0. I)} , then (I) clearly holds; (s0, i)  Is a 

term ma I element. 

Induction:  Let A   be any policy tree for which (1) holds. Let  (s, i) 

be a terminal element of ^ with i > 0 . Let s1 ■ 

(sj , ..., Oj , .... sn) and s" = (sj I sn) . 

If    (h1, h")     are such that  for some policy   TT  , T^S') = h' 

and   n(s") - h"  , then 5  -4-11 {(s1, h')   ,  (s", h")}     Is a 

policy tree also.    We show (I)  holds  for 3   .     If    TT    is 

represented by 3   ,  then    n    is  represented by   &  , T^S') =  h' 

and   vis") » h" .    Hence 

pmys) - m)\t. * PCY, - o | s}Tn(s') + PIY. -1 | Dys-)) 

It  now follows  (1)  holds for 5   .     ($', h1)    and    (s". h")    are terminal 

elements of 3   .while     (s,   i)    becomes an  interior element of  B   .    / / 

A lower bound on    T  (s )    over policies represented by a  specific 

policy tree  is generated by Lemma 3 and the following probabilistic con- 

siderations.    Let    TT.    be any policy satisfying:    Vs  , TT.(S) * j => 

Vi  i« j   , s. f* -I   .     Thus    TT.    tests    Y.    only after all  other    Y.     have 

been tested.    Many policies have this property,  but  the random event of 

testing    Y.     is the same  for each such policy.     Letting    n    be any policy, 

o 
we have, for  the problem beginning  in the nominal   initial  state    s    , 

(2a)     [Y.   is tested by using policy TT.} c (y.   is  tested by using policy rr}  . 

It  follows that,  for any state    s 3 P(s) > 0  . 



 ,"""","—■■'■"■■^■■■■■■■■B! 

P{beginnlng in state s, Y, Is tested by using policy TT. | S) S 
(2b)   r J J

| .. Plbeginning in state s, Y. is tested by using policy n | s] . 

Lemma k:     Let n, be as described above. Let 

!t.P{beginning in state s, Y. is tested by using policy n. | s] 

if P(s) >0        J 

0 otherwise, 

and let t * 0 . Then, for any state s and policy tree ^ , 

n 
(i)   for all policies TT 3 TT(S) = i , D I.(s) + t. ^ T (S) 

j-1    J ' " 

(il)       for all  policies    rr    represented by   ^  , 

(3) ^(s0) a   E   p(s)t. +       E       pro E 1,(5) . 
n (s.i)^^ '       (s,l)   terminal j = l    J 

elements of ^ j^i 

Denoting  this   lower bound by    L{U)   ,  we have 

(ill)     for all  policies    n    represented by ^   ,  T  (s )  2:  LltfCj    and, n 

when   &   is complete, T  (s  ) = \.{/l)   . n 

Proof:     (II) and  (ill)  follow from (1)  and Lemma 3.     (I)   follows  from 

Equation  (2)  above and  the formula: 

n 
Et.P{Y.   Is tested when beginning   In state s and using rr  |   s} 
; „ i    J J „ 

J If    P(s) > 0 

,o if   P(5) = o . / / 
An upper bound on the value of an optimal  policy can be computed  in 

terms of quantities which will   be on hand  from making  the  lower bound 

computations.     Specifically,   let    ä.    be any policy tree and    rr    any 

utuümmam 



10 

policy such that  for all   interior elements     (s,  i)    of   £   , we have 

TT(S) =  i   .    Thus    TT    may not be  represented by   Ä .    However,  Equation 

(1)  remains valid and  is proven the same way.    Recalling this formula. 

T_(s0) - E PCOt, + E P(S)Tn(s)   . 
(s,   I)   interior (s,   i)   terminal 
elements of ^- elements ofÄ 

Now,  let    (s,   i)     be a terminal  element of   Ä   for which    i > 0  .     Suppose 

Tt    is such that,  beginning  in state    s   , Y.     is not tested unless   it   is 

necessary,  that  is,  unless    n    has tested all  untested    Y.     (those with 

s. ■ -1)    except    Y.   , and still   it  is necessary to know    Y,     in order  to 

determine the correct action.    Thus    TT    Is a    n.    policy as described 

above.     Then    I.(s)  ■ t.PtY.     is  tested,  beginning  in state    s    and  using 

pol icy    TT I   s}    so 

Tn(s)*      E       t    *I.(s)   . 
j3S|«-l    J 

It follows that for some policy TT , 

ik) JA*0) *       E        pfsh. +        E        P(S)    E    t  +ii(s) 
(s,l) Interior        (s.i) terminal     j5s.*-l J 

element of ^        element of Ä 3      A. 
I > 0 JFI 

Denoting this upper bound by U(i2) , we have for all policy trees ^ , 

T (s0) ^ U(ä) , where TT  denotes an optimal policy, and T (s ) = U^) 
o     ^ ^ o 

whenever Ä. is complete. Our branch and bound scheme will generate 

various policy trees and the quantities necessary to compute U(^Z) . 

The following formulas give an explicit form for I.(s) and also 

allow us to see how the bounds Lfct)  and U&) are computed sequentially 

as needed. Define 



1— -Ü-L- JiiJi ijii-,'j-...J .i-ii ^i^in a^nji 

11 

n(s) - |tt»»  (aj,,  .... 0)n) €  {0,   1}"  |Vj 3 Sj = 0    or    1   , we have    ^ = s j |  , 

so  in particular. Cl * n(s0) =  {0,   1 }n  .    One can think of    u € n    as an 

outcome of the random vector    Y «   (Y. Y )   .    The probability of such 

an outcome   Is    P{Y = ou)   .     Let 

I     if. for    u)' «   (ujj ,   ....  (1  - (M.) üJn)   ,  we have 

P[Y » tu} > 0   ,  P[Y = u)'} > 0    and    «u    and    u)'     belong to 
Ai(u,) =   i r J I       distinct  sets of the partition    I.A.,   ..., A  J   . 

0    otherwise. 

I     if.  for    (u1 ■  (ujj ,   ....  (1  - tu.) UJn)   ,  we have 

P[Y » U)} " 0    or    P[Y ■ u)'} = 0    or    tu    and    u)'    belong to 
AM        ' 

J f       a common  set 0^ the partition    {A. ,  .... A.}   . 

,0    otherwise. 

These are devices for computing    I.(s)   .    For  states    s    with    P(S)  > 0   , 

t.   E   P(Y - «J |   sU.(u))     if    s    =  -1 

0 if    s. - 0    or     1   . 

However, what really appears  in computing    L(£)    and    U(£)     is    P(s)l.(s) 

For any state    s    and  Integer    j   ,   1  s j s n  ,  define 

ft.     £       P[Y - wlA.H     if    s 

EjV^ -   | 
if    s. a 0    or    1   , 

J 

so 

(5) P^IjCs) « E.U) 

itti 



i^^v«. 
, —- 

12 

For any state s and integer j , I s j s n , define 

E.(s) 
J 

t.  E  PtY - u)}Ä,(u))  If s. « -1 
J u)en(s)     J     J 

If s. - 0 or I . 
J 

Notica A.(u)) + Ä.{u)) ■ I , so 

(6) Us) + E.(s) - t.P(s) . 
J     J     J 

Now, recalling the formulas (3) and (4), we can write L(£) and U(£) 

in terms of E.(s) . 

(?)   L(ä) -   E   pcm, +      E      i; Ms). 
(s, |)€4    '  (s, I) terminal j»l J 

element of A.      \i\ 

(8) uw -    E    P(5)t| + E 
(s,   i)   interior (s,  i)  terminal 
element of Ä element of Ä.   3 

I > 0 

P(S)      E t.  + E.(s) 
J ' 

In particular,   for a policy tree of  the form   Ä* {(s  ,   i)}    with    i > 0 

using  (6)  we see 

n      n 
(9) Lfc) • £ t, - E M*) + MS0) 

j-i  J   j»i  J ' 

(10) UW) - E t, - E.(50) . 
j-1 J  J 

Now, If we extend a policy tree ^ , we want to obtain the bounds for the 

new tree in terms of the bounds on CL ,    Specifically, let (5,1*) be a 

terminal element of the tree ^ wl th I > 0 . For s' - (s. , .... 0., .... s ) 

and s" " (s. I s ) , If h' and h" are such that there 
i      i      n 

exists a policy with n(s') ■ h' and "(s") ■ h" , then according to 

the induction step of the definition of pol icy tre«3, 3 ■ ^-U (U1, h1) , 



- ..-.     -'ÜSS.!' 

(s",  h")}    is also a  policy  tree;  using  (7),   (8)  and   (6), we have 

»3 

(ID 

and 

L(3) - L(Ä) + Eh,(s') + Ehll(s") 

(12)    U(3) = U(Ä) + §,(5)   -  Ehl(5')  - EhM(s") 

- l(h' = O)P(s')       E       t    -  l(h" = 0)P(s")      E     t. 
jlsl'-]    J j^s'.'-I    J 

where we have taken    E   (s)  = 0    for every state    s    and 

1     if    h » 0 

l(h - 0) =   j , h » h'   ,  h" 
0    if    h ?« 0 

Let    (Y.,   ..,,  Y     ; A.,   .... A.)    be a decision  problem.    The 

following  is a "branch and  bound" algorithm for  finding an optimal   policy. 

Step  1:     If every policy    n    stops at  initial   state     5°    (corresponding 

to the correct action being a constant almost  surely),  then    T  (s0)  = 0  . 

If not,  then   Vi  3  1   ^  i  s: n   , 3 pol icy    TT 3 n(s0)  =   i   .    Let 

^■-  i*j   |   i -  1,  2 n)    where O.. «  ((s0,   i)}   ,  a policy tree. 

Notice every policy  is  represented by exactly one of  the policy trees   in 

the  family    <?~.     Set 

and 

and 

L^j)  " t. +   E  E  (s0) 
1 '      j-1    J 

U^j) 
j-1    J 

U » Min U(^.) 

=23 



14 

Then T^ (s0) ü U and, for all  i and n with TT(S
0
) = I , Lftf.)  s 

o 
^(s ) .  Continue to Step 2. 

Step 2:  Reduce the set e?" by removing any ^? €<7*"9 Lfa)  > U ; those 

policy trees cannot represent an optimal policy. Let the policy tree£ 

satisfy LC*) - Min Lfct') over 4L' £ f.    If ^ Is a complete policy 

tree (cannot be augmented), then all policies It represents are equiva- 

lent to the user (Lemma 2) and any one of them is optimal, since for such 

a policy n , L(^) ■ T (s ) .  If Ä is not complete, continue to Step 

3. 

Step 3:  Since ^ is not complete, there exists a terminal element 

(s, i) of ^ with i > 0 . Let s' - (s. , ..., 0 s ) and 

s" ■   (s. I.,  ....  s )   .    Augment   &"  by removing    ^-and replacing 

ÄU  {(s1, h')   ,  (s", h")}    for each pair    (h1, h")     such that for some 

policy    TT  , ^(s1) ■ h*    and    TT(S") ■ h" .    The possible values for    h' 

will   be either    {o}     (if    s1     is a  state  in which no more  testing  is 

necessary)   or    [j   j   s!  " -1}     (any    Y.    not already  tested);  possible 

values for    h"   are analogous with respect to    s" .     For any such pair 

(h-, h")   .  set 

L^U{(s', h')   .   (s".  h")}) - L(4) + E. .(s') + Ehll(s") 

and 

UUZ.U C(s'. h')   ,  (s", h")]) - U^) + E^s)  - Ehl(s')  - Ehll(s") 

-  Uh« - 0)P(s•)       E       t.  -  l(h" - 0)P(s")       2       t.   . 
J3SJ-1    J j9sy-l    J 

Recompute  the upper bound    U    by    U =» Min U^Z')    over  ^'  €<^'  and  return 

to Step 2. 



■■ —«-■ .1SBL.  TT 

15 

0. An Example 

We conclude this chapter with a numerical example of the above branch 

and bound toethod.  The origin of the example is a fault finding problem 

which will be fully described in Chapter 2. 

We first remark that for any decision problem (Y, Y , 
I      n 

A. A ) , it is sufficient to know only the sets 

Ä. - {«) €  [0.   1]"  | 1« 6 A.   , P{Y - ou} > o| 

1 

All the quantities computed in the course of the algorithm remain un- 

changed when A. is replaced by A. , and we could have assumed ini- 

tially that the sets    Aj Ad    only partition    {(« € (O,  I}"  |   PfY « <uj > O], 

Data for example: 

P{Y - u»J 

0      Mlh     0     0      7/7^     lllh     k2/7k     21 m 

U) 

(U, 

U) 

'I 
1 1 1 0 1 0 0 0 

'2 1 1 0 1 0 1 0 0 

3 1 0 I 1 0 0 1 0 

t,. <. 

'2-    3 

t3.16 

«j 2 3 k 5 

Each column of  the table represents an    ou € [O,  1}    .    The sets 

A.,  ..., A_    are singletons, so a policy must determine for each out- 

come of the  random vector    Y    which elementary outcome   tu <z Cl    has 

occured.    Clearly,  no policy can stop by making no tests.    We recall 

that    E,(s) - t,      zJ     Ä.((u)    and 
J J oj€n(s)    J 



•^ 

16 

1  If, for u)' » (uij (1 - u).), .... u)n) , we have 

p[Y « UJ} ■ 0 or P[Y ■ u»'} ■ 0 or u» and u)' belong to 

I. {to) 
J     I  a common set among the sets (A., ..., A } . 

,0 otherwise. 

However,  for our example,  we can take 

/I     if    u).  - 0 and P{Y » u)} > 0 and P{Y »  (cu, ,   ....  I i«n)} = 0 

Ä.(u)) • A» 
srwlse v0    othei 

without changing  the value of    P{Y ■ UJ}Ä.(U))   .    This particular form for 

A.(u))    always occurs for  fault  finding problems  such as this one.     For 

our example, 

E,(s0) - kikl/Jk) - 8V37 corresponding to    u» -  (0, 0,  I) 

E2(s0) - 3(1»2/7U) - 63/37 corresponding  to    a> -  (0, 0,  I) 

E3(s0) -  16(1/7'*+  7/7U + 3/7^) - 88/37 corresponding to   w-  (1,  1, 0). 

u) ■  (I» 0,  0)    and    w»  (0,  1,0)     respectively. 

We have maintained a record of those   UJ 9 P[Y ■ U)}A.(UJ) > 0    for each    j   . 

When computing    E.(s)     in steps to come, we can use this data rather than 

having to scan over  the original  data table.    Following Step I  of the 

algorithm, we will  compute the upper and lower bounds associated with the 

trees   Ä. - {(s0,i)J   .for    i -  1. 2. 3  . 

UO «   E   t.   -   £   E.(s0) + §.(5°) 
1        J-l    J       j-1    •» ' 

- 23 - 235/37 + E^s0) - 616/37 + E.(s0) 

UK.) -EM" ^(S0) - 23 -E.(s0)   . 
j-l    J 



«■BE'—"T; rsssss: 

17 

We will represent policy trees graphically, making it clear how 

they are a partial specification of policies. For example, the trees 

&•  " l(s , i)} and their bounds are: i 

H.rl.-J).! 

L - 700/37 

U - 767/37 

L - 679/37 

U • 788/37 

(-I.rI.-J).3 

L « 70V37 

U - 763/37 

The current  upper bound  is    U^MirtU^,)» 763/37  . 
I 

Proceeding  to Step 2 of the algorithm, we see none of the  three 

trees generated  so far have  lower bounds which exceed the current  upper 

bound    U   .    We  see policy tree  ^2   ,   representing all   those policies 

which begin by  testing    Y.   , has  the  lowest  lower bound among all   policy 

trees thus  far generated.    As this  tree   is not  complete, we begin by 

extending  this  tree.    A policy cannot  stop  in  states    (-1.0,-1)     or 

(-1,1,-1)    as knowledge of    Y«    alone   is not  sufficient  to determine both 

Y.    and    Y.   ,   regardless of the valu?    Y,    takes.    Hence,  {(s0,  2)}    has 

four extensions: 

(s0.2) (s0.2) (s0.2) 

v    v   V    V   V    V 
(-1,0,-I),I  (-|,|\l),I  (-i,0,-l),3 H,i;-I),3  (-l,0,-l),l (-1,1,-1),3 

(s0,2) 

(-1.0.-0,3 (-1.1.-0,1 

To compute the appropriate lower bounds, we have 



18 

E, (-1,0,-1) » k{k2/7k) "  8V37 corresponding to u» = (0, 0, I) 

E-(-l,0,-l) = \(){7/7i*)  = 56/37 corresponding to UJ = (1 , 0, 0) 

£,(-1.1,-1) = 0 

E3(-l,l.-l) •  16(1/74+ 3/7^) = 32/37 corresponding to    tu»  (1.  1,0) 

and     (0,   1, 0)     respectively. 

We see  that  to compute  say    E_(-l ,  1, -I)   , we need only scan over    UJ 6 

n(-l ,1,-1)     (t .e., cu B U)   -  1)    for which    P^Y = UJ]^. (w) > 0  .    But  this 

list  of    UJ    and corresponding    P[Y ■ UJ}    has already been generated   in 

computing    E,(s )   .    The  lower bounds  for these newly created  trees are 

easily computed.    They are,  respectively, 763/37.  767/37. 795/37,  735/37. 

The best  (lowest)  of the new upper bounds created  is    U(tf2) + E-U  )   - 

E,(-l, 0,  -1)   - E   (-1,   1,  -1)  - 735/37   , hence  the new value of    U     is 

735/37-    Returning to Step 2,  we see the first three of the  four newly 

created trees can be dropped  from further consideration, since their 

lower bounds exceed the current upper bound    U    on    T    (s )   .    We   illus- 
o 

träte  the  remaining policy trees while suppressing  the  states  involved. 

L - 700/37 L ' 735/37 L = 70V37 



19 

Now,  the first policy tree  listed above has the  lowest   lower bound, 

and since  it   is not complete, we continue  to Step 3-    The computations 

are analogous to those made above. 

E2(0r-I.-1) 

E3(0,-1.-I) 

E20.-«,-I) 

E3(l.-1,-1) 

3{k2/7k) - 63/37 corresponding to    UJ =   (0, 0,   I) 

16(3/74) ■ 2V37 corresponding  to    Iü=   (0,   I,  0) 

0 

16(1/74+ 7/7^ = 6V37 corresponding to    u)=   (I,   1, 0) 

and    (I, 0, 0)     respectively. 

The extensions of    i(s   ,   I)}    are: 

763/37 788/37 827/37 72V37 

The best of the upper bounds generated  Is    UG?.) + E. (s0)   - £»(0,  -1,  -I) 

- E-(l,  -I,  -I)    or    72V37  ,  bringing the  current  value of    U    to 

724/37  .    Accordingly,  the only policy trees  remaining to be considered 

are: 

A 
L - 72V37 L - 704/37 

Expanding  the  second policy tree, we see  if    Y»  1   , then    Y.  ■ Y» ■ 0 

a.s.,  so no more tests can be made.     If    Y. = 0  ,  then a policy can  test 

either    Y,     or    Y-   .     Comparing  these  two extensions    (k     Indicates  the 

"correct action",  so    Y € A.     a.s.): 

^a Mtavrii 



20 

E, (-1,-1.0) - 0 
y< 
y\ 

E2H.-I.O) - 0 0   ;•:% 
L - 70V37 70V37 

We see the upper bound generated by each policy tree is the same, namely 

U(^) + E,(s0) - P((-l.-M))  E t. - 23 - 7(42/74) = 704/37 . 
3   3 j-1,2 J 

This improved value of U allows us to restrict our attention to the two 

trees just created above. We remark that our calculations have now 

fixed the value of 704/37 as the time of an optimal policy for this pro- 

blem. Extending the first of these trees, we see only one extension is 

possible. 

E2(0,-1.0) - 0 

E2(l,-I.O) - 0 
stop, k =» 4 

L - 704/37 

There is no point in making any further upper bound computations.  This 

newest tree still has the same lower bound, so we extend it again.  There 

is only one extension, which gives a complete policy tree, at no increase 

in lower bound. Hence, we have 



 , ,  -.,-_ 

21 

stop,  k = k 

stop, stop,  stop, stop, 
k«5 k»3k=2 k-I 

L - 70V37 

This  tree  is complete.    It   Is a complete  specification of a policy for 

the  states relevant to that policy.     It  follows that  for any    n    repre- 

sented by  this  tree  (they are all  equivalent).    T  (s ) =  704/37    and    TT 

Is optima' 

E.     Deadl me Criterion 

Another criterion with great   Intuitive appeal   that might  be applied 

to a policy  is  the deadline  criterion.     This  is simply the probability of 

having completed testing, determining  the correct action,  on or before 

some specified deadline    t   .    Policies   in this case are  rules  telling the 

user which    Y.     to test next, or  to stop, depending on the current  state 

of  the problem and the time  remaining until   the deadline. 

There  is a branch and bound  technique  for solving this problem ana- 

logous  to the one given above.    We will  describe a  bound which could be 

used to generate an algorithm,  however,   it does not  seem particularly 

well   suited  to  the general  problem.     In Chapter 3 we will  discuss special 

decision problem structures with  the deadline criterion. 

I If    II  III   I      II      HI—III 



■■—pppyipw——P—— —^—^ i 

22 

In order  to generate a branch and bound procedure  for this criterion, 

we need a  lower bound on    P(T    > t   j   S}    over all  policies    rr  ,   for each 

state    s    and  time    t    for which    P(s) > 0   ,  where    T   (s)     is  the  random 

time until   the process stops, beginning  in  state    s    and following policy 

TT .    Equivalentl v,  an upper bound on    P{T   (s)   ^ t  |   s}    over all   policies 

n    or an upper bound on    P[3 pol icy TT 3 T   (s)  ^ t  |   s}    would be  sufficient. 

The bound  results  by computing  the probability of  this event  exactly. 

It would appear  that  to compute this probability each time the algorithm 

branches would make a considerably  long computation.     In particular, an 

incremental   process  by which  lower bounds were able to be computed above 

no longer works here. 

We will  mention  that  the dynamic programming solution  is easy  to 

formulate,  however,  the optimal  value  function now depends on  the  state 

of the problem and the time remaining.    This   indicates  that  the function- 

al  equation must  be  solved about    3    X t    times, where    t     is  the   initial 

deadline  (assuming all   times are  integer). 



^^^^^^^^^mmm^^mmmmmmmmgm ..."...J. '.. .TTTStaSÜSZÜBS 

23 

CHAPTER 2 

GENERAL FAULT FINDING MODELS FOR COHERENT SYSTEMS 

Introduct ion 

In this chapter we introduce coherent systems, a reliability model 

for "go, no-go' systems and give a description of some general faultfinding 

problems which are solvable as decision problems. An example is included. 

A. Coherent Systems 

Coherent systems arise from the study of a physical system whose 

operation is classified as either functioning or failing, where this 

operation is determined by the joint functioning or failing of some finite 

set C of components. Accordingly, a joint performance of the components 

C  is a function X    C -• {0 , 1} with the interpretation that for 

all c € C , 

lo    If component    c    fails 
X(c)  » 

(l     If component    c    functions  . 

A  system  (not  necessarily coherent)  will  be denoted by     (C   ,  cp)     , where 

cp    is a  function from all  joint performances of the components  to    [0,1] 

with the   interpretation that  for all    X  , 

(0    if the  system falls  under joint performance    X 
<p(X)  - { 

J 1     if the  system functions under joint performance    X  . 

Coherent  systems are those systems  for which the replacement  of a failed 

component  by a functioning one will  not cause a functioning system to fail. 

To express  this precisely, we say,   for joint performances    X    and    Y  , 

X s Y    whenever for all    c € C   ,  X(c)  s Y(c)   .    Then coherent  systems 

are  those systems    (C  ,  to)     for which 

(1) X  S Y  »> cp(X)   S ^(Y)   . 



24 

We see some components may have no effect whatsoever on the system's 

performance.     Such components are  referred to as   inessential   components. 

Components  not   inessential  are said  to be essential.     It follows  that a 

component    c f C     is essent iaj  to    (C   ,  cp)     if and only   if 

3 X 3 cp(X   ,  0 )  r* cp(X  ,   1   )   , where 

(2) 
(X   . Kc)   (c) 

Some common examples of coherent  systems are the series and parallel 

systems.    A  series system functions   if and only  if all   its components 

function while a para 1 lei  system fails   if and only  if all   its components 

fail.  These are special   cases of  the    k-out-of-n    systems,     (k/n)   .    A 

(k/n)     system functions   if and only   If    k   or more of   its    n    components 

function.     In our notation,  we say     (C   ,  cp)     is a    (k/n)     system when 

C    contains     n    components and    cp(X)  ■  1  <=>   2^  X(c)  a: k  . 
c€C 

Coherent  systems have been studied   in the monograph [Barlow and 

Proschan,   1956] as well  as the   literature.    See [Birnbaum,   Esary and 

Saunders,   1961] and [Esary and Proschan,   1963] for a basic exposition of 

coherent  systems,  particularly of  the properties of the  reliability 

function    P{cp(X)  ■ 1]  ,  the probability  the system functions,  when the 

performance of each  individual  component   is  random and   independent of the 

other components.    An application of coherent systems  to characterize a 

class of  life distributions,  those with  increasing hazard rate average, 

is given  in  [Birnbaum,  Esary and Marshall,   1966].    Coherent  systems have 

also been studied under  the guise of  blocking systems.     ([Butterworth, 

1969]  ,   [Fulkerson,   1968]). 

Our definition of coherent  systems   in this chapter will   differ from 

that  found   in  [Birnbaum,  Esary and  Saunders,   1961] and elsewhere.    A minor 



^^^mmmm^—~mmmm*~~~ • .,_,   .I.11;... l.g'i'.i.'D-^.ili'Ii-l'JL.'J-.Jgi1. 

25 

difference  is that  our definition allows all  components  to be  inessential. 

A  significant difference   is  that while the assumption of   independence,  or 

in some  instances  the weaker assumption of association  (e.g.,  see  [Esary, 

Proschan and Walkup,   1966]),   is usually made,  we will  allow the joint 

performance distribution to be arbitrary. 

B.     Some Fault  Finding Models  for Coherent Systems 

Consider a coherent  system    (C  ,  cp)    for which the joint performance 

of the components   is  random according to a  known joint  distribution.    Let 

the components be   indexed    c.      c      and  suppose one can test component 

c.   ,   requiring time    t.   ,   to  learn whether   it   is  functioning or not.    The 

object   is  to determine the  state  (function or failing)  of each component 

a.s.   by sequentially  testing  some components,   in minimum expected time. 

A policy for testing   is a  feedback rule telling the user which component  to 

test  next or,   if enough  information has been gleaned,   to stop,  based on 

the previous tests and  their  results. 

This   is clearly a decision problem.    To make the  formal   identification, 

let 

fO    if component    c.     is fai led 

1     if component    c.     is functioning  . 

The sets    A.   ,..., A.    can be  taken as  the singleton subsets of     f0  ,   I}     , 

clearly a partition.     Knowing  the state of each component   is then equivalent 

to knowing for which    k    we have    Y € A      a.s.    We  remark that  for any 
k 

decision problem,   it   is sufficient  to know only  the sets 

A.   n|u) |   P{Y = UJ] > 0 } , 

and we could have assumed   initially that  the  sets    A.   ,..., A .    partition 

|UJ  |   P{Y = UJ]  > 0   } . 

MW y*« hi» W^M M t¥m.-ß: m 



26 

We hasten to remark that the introduction of coherent systems in the 

above model serves only as a framework. The statement of the problem 

does not depend on the structure function cp of the coherent system 

(C , cp) . Indeed, the problem is completely specified by the distribution 

of the joint performance X and the testing times t. . 

The reason for this is the nature of our objective in testing the 

system.  The object was to learn as much as possible about the system, 

namely the joint state of the components. This resulted in the partition 

A. ,..., A . of [0 , 1}  being the singleton subsets. We can formulate 

objectives for testing a set of components which require learning some- 

thing less than everything from our testing, and which, as is to be 

exacted, lead to a coarser partition of fO , 1}  than the one above. 

Two such examples follow, in which it happens that the structure function 

cp does play a role in specifying the problem. 

The first such model assumes, as above, that the joint performance X 

of a set of components C  is random according to some known but arbitrary 

distribution. Suppose then that  (C , cp)  Is a coherent system and that 

we wish to determine, in minimum expected time, whether the system is 

functioning or not when its components are performing according to X . 

As usual, we can test component c.  in time t. to learn its state. 

This Is a decision problem with Y. ■ X(c.) , I - 1 ,..., n , and with the 

partition A. ,..., A. having just two sets, 

Aj » |UJ | for xCcj) » ujj , I = 1 ,..., n ; cpU) - 0 

and its complement 

A2 - juj | for x(cJ) - cu. , i = 1 ,..., n ; cp(x) = Oj. 

The framework of coherent systems provides a natural example of a problem 

in which our objective requires learning something less than everything 

about the system. 



MSMHH^M HHB 

27 

Another,  somewhat  artificial,  example   is what we will  call  the 

repair problem.    As above, weare given a coherent system    (C  ,  co)     for 

which the components are performing according  to the random joint 

performance    X  .     In this case, a failed component can be  repaired at a 

cost of    r.  i 0    for component    c.   .    The object   is to learn what   is  the 

least (repair)  costly set of failed components,   say    R , which, when 

repaired, will   insure the system's operation a.s.     If one knew what 

joint perforiiancc    x  :  C -• {0 ,   1}      had occurred,   it  is clear that    R 

would satisfy 

]C    1^5 * Hin \J2     r    | T   are fai 
:.<ER     9 )c.€T    ' 

I *      9 

led components which, when 

repaired,   insure the system's operation,   i.e.,  for 

(3) 
/(«•})   • ''     if    x(c.) »1    or   if    c.  f T  ,  y(c.) ■ 0    otherwise  , 

we have    fp(y)   "if. 

For example,  tha set    R    would be empty   if  no repairs were necessary, 

i.e.    co(x)  *  1   «    For purposes of making  this example well  formed,  assume 

that for every  joint performance    x    with positive probability 

(PfX s x} > 0)   ,  there   is a unique set of    R    of failed components  satisfying 

equation (3).    This set    R    might be the same for several  outcomes    x  , and 

consequently  it might  not be necessary to determine specifically  the state 

of every component.     In any case, we can ask for a testing policy which, 

in minimum expected time,  determines just what  the set of failed components 

R     is.    The resulting decision problem has    Y.  = X(c.)   ,   i  •  1    n  , 

as usual.    The partition    A.   ,..,, A.    is   induced by the repair costs    r. 

and the structure function    $   of the coherent  system.    Two elements    uu 

and    ou'    of    fO  ,   1}      with positive probability will  belong to a common 

set    A.    whenever,   for    x(c.)  ■ m.    and    x^c.)   = UJ'   ,   i  =   I   ,...,   n  , 

x    and    x'    are joint performances  for which the sane set of components 



mmmmmm*mm——m^^m~ 

28 

R    satisfy equation  (3).    Our assumption that    R     is unique for each    x 

Insures  that this definition makes   A     ,..., A.    a partition.     If    R 

is  not  uniquely determined by  (3)  for each joint performance    x  ,  the 

above problem formulation breaks down.    Clearly one can,  for each    x , 

designate a specific    R    satisfying (3) and use  it.    However,  this 

procedure can  lead to a sub-optimal policy.    Notice that we are content 

to restrict our attention to those   m   for which    P(Y ■ a>} > 0 . 

We should explain that  the following similar problem is different 

from the model described above.    Given a testing time    t.    and a repair 

time    r.    for each component    c.   , perform the necessary tests and repairs 

to the components  in order  to guarantee the system will  operate a.s., all 

in minimum expected total  time.    Our solution of  the repair problem would 

give a sub-optimal  policy for this problem,  since   it would test enough 

components to determine the minimizing set   if equation  (3).    However,   it 

may really be optimal  to stop testing prior to this.    For example,   if the 

sum of all  the repair times  for all components   is   less  than every test 

time,  any optimal policy would make no tests whatsoever and  instead would 

make enough repairs so as  to  Insure the system's operation a.s.  on the 

basis of no tests,  repairing all  components  if necessary.    It appears that 

this problem can not be handled by the problem formulation of Chapter  I. 

It does,  of course, have a straightforward dynamic programming solution. 

C.    An Example 

Let us  illustrate the models presented so far with an example.    The 

coherent system for our example  is one witii three components, and  is 

easiest  to specify by the following sketch. 



—— ■H ipniifiii  iiii.i-ii.jtuija^mggm 

29 

Figure  1 

Connections through a box  labelled    c.    are present   if and only   if component 

c.    functions.     The system functions   if and only  if there  is a path through 

the network.     Our system then functions whenever components    c_    and 

either    c.    or    c»    function.    The distribution of the joint performance 

X    is assumed  to be  the following:    we suppose that nominally the components 

operate  independently of each other, with    p(c.  functions} =  ]/k  , 

P{c2    functions} ■ 1/8   and    P{c-    functions} ■ 2/3  .    However,  we suppose 

further that  the system is down  (not  functioning),  so the true distribution 

of    X    is the conditional distribution    P{x - x |  co(X)  ■ 0}  .    For the 

above system. 

P{X - x} 0 im 0 0 7/74 

xCc,) 1 i I 0 1 

x(c2) I i 0 1 0 

xCcj) 1 0 1 1 0 

3/7^   42/74    21/74     Test Times 

0 0 0 

1 0 0 c 

0 1 0 t, -  16 

Table showing the distribution of X and the testing times for our 

examp1e 

Figure 2 

Each column of  the table represents a joint performance    x .    The top  row 

of the table shows the  (conditional)  probability that    X ■ x    for each    x . 

The table also shows the testing times  for each component. 

The first   fault  finding problem to consider,  namely find the joint 

svate of the components  in minimum expected time,   is  the example   in 



^■^—^— 

30 

Chapter   1.    The calcuh': ions are carefully explained there for every 

step. 

The second model  described   in this chapter,   that  is,  determine with 

probability one whether the system will  function or not when put   in 

service,   is simplified by the distribution of joint performance.    Since 

the system will  a.s.   not  function,  no tests are necessary and because 

of the  requirement that a policy must stop  if possible,  we see every 

pol icy   is optimal as every policy must have    TT(S  )   a 0  . 

To specify the repair problem for this coherent system, we need to 

specify a repair cost for each component.    Figure 3 below shows the set 

R    of  failed components  realizing  the minimum  in equation 3 for each 

joint performance   x   with    P(X ■ x) > 0 .    We have taken    r. = 3  , 

r2 - 2  ,  and    r- « 1   . 

R-* (c3l        {c3} {c33        [c2}        {c3   , c2} 

x(c1) 1 1 0 0 0 r, - 3 

x(c2) 1 0 1 0 0 r2 « 2 

x(c3) 0 0 0 1 0 r3 -  1 

n. n. M. MA M- 

Table showing the set    R    realizing the minimum  in 

equation (3).    Also shown are the sets   A.   , A. 

and   A,    which partition    <UJ |  P[Y - cu] > 0 f. 

Figure 3 

Notice the assumption that the set R realizing the minimum of equation 

(3) be unique is satisfied here.  In Figure 3, we have also designated 

the sets A. , A- and A^ .  Of course, we identify each joint perfor- 

mance x with the cu f [0 , 1}  for which UJ. ■ x(c.) , i * 1 , 2 , 3 . 



: —— 
—mna~-. 

31 

To begin the algorithm fjr this example, we need to compute 

E.(s0) = t. Y,     P{Y - u)} A, (u))  for  i = 1 , 2 , 3 , where 

1  if, for (u1 = (u), ,..., (1 - tuj) ,...,(!),) , we have 

P{Y - u)} = 0 or P{Y = uu'l = 0 or * and cu' 
Ä^ou) 

belong  to the same    A.   ,  j  ^  1   ,2,3. 

0    otherwise  . 

We have: 

£,(5°) = k{]/7k + 3/7k + k2/7k) - 92/37 

E2(s
0) « 3(im + 7m + ^2/7if)  = 75/37 

E3(s0) =16(1/74 + 7/74 +   3/74)  = 88/37 

The practice of  keeping a record of those    ou    for which    A.(u))P{Y = tu} >0 

when    E.(s  )     is computed can be followed here,  as well  as  for any decision 

problem.    This  practice tends  to reduce some of  the work necessary  in 

computing    E.(s)     for subsequent  states    s   ,  at  least   in hand computations, 

and  is detailed   in the example of Chapter   1.     Using equations   (9)  and   (10) 

of Chapter  1,  we begin with the following  three policy trees and bounds. 

a i- o/^i 

LW,) = 688/37 

Ufce,) = 759/37 

L(ö2) - 671/37 

UW2) - 776/37 

L(tf3) = 684/37 

UW3) = 763/37 

Figure 4 

The computations are  fundamentally no different from those   in the examples 

of Chapter  1,  except  of course for the choice of the sets    A.   ,..., A.   . 

By following the branch and bound algorithm,   the following optimal  policy 

is generated. 

•MaaMM ^SUM M^^MüMMMB 



______ 

32 

k « 2 

Expected time to use this optima)  policy   is    692/37  .    k 

Is the correct action-   the  random variable defined by the 

equation    Y € A.     a.s. 

Figure 5 

0.    Extensions to Problems with Modules 

Within the study of  coherent systems,   the notion of a module has 

been studied.     In [Birnbaum and Esary,   1965], a module  is defined to 

be a subsystem of a coherent system.    Specifically, a nonempty set 

A c C    is a module of    (C  , cp)     if we can write: 

vx , cp(x) -♦(r(x|A) . x|c_A) , 

where 

XL  Is X restricted to the set A  (hence* a joint performance 

of the components A). 

(A , f)  is a coherent system, sometimes referred to as the module 

rather than A . 

({c.l U (C-A) , ♦>  Is a coherent system, with the pseudo-component 

c  replacing the set A . The specification for the pseudo- 
A 

component c.  is given by r(X|A) . 



  ■ ' "     ——— — — ■ ■ ^.■--i~...'.rr^.i\i.-^::.::.~..3~ 

33 

For any coherent system,  every singleton  (one element)   subset   is a 

module.    For the     (k/n)    systems other  than the series and parallel,  the 

only modules are  the singletons.     For the series or parallel   systems,  every 

nonempty proper  subset of components   is  a module. 

Our   interest   in modules will   be to foridjlate a very general   fault 

finding model.     To extend one of  the models previously mentioned,   suppose 

that    M.   ,...,   M       is a modular partition of    C    for the coherent  system l m 

(C  ,  cp)   .     By  this we mean each    M.     is  a module of    (C  ,   CD)    and 

M.   ,...,  M       is a partition of    C  .     If     (M.   ,  T.)     is the coherent 

system for module    M.     in the definition of a module,   then our problem 

might be to determine the joint state of  these modular subsystems   in 

minimum expected  time,  by testing   individual  components.     Let    X    denote 

the  random joint  performance of  the components    C    for    (C  ,  cp)   .    Then 

this problem  is a  decision problem, with    Y. = X(c.)   ,   i  =  I   ,...,   n . 

There are    2    A.'s   ,  one for each joint   state of the  random vector 
J 

This  model   reduces to a previous  one when r-K) r"(\) 
each    M.     is a  singleton. 

A general   fault finding model which  relies on modules   is one   in 

which we suppose  there are two sets of modules,  the observable modules 

Q.   ,...,  Q     ,  and  the repairable modules    R.   ,...,  R    .    The   idea   is that 

tests can be performed on any of  the observable modules  to determine 

whether  they are  functioning or not; we are  limited  to repairing  or 

replacing only  repairable modules.     In order to make this problem well- 

formulated,  assume  that the joint  state of  the repairable modules   is a.s. 

some  function of  the joint  state of the  observaL.e modules.    We can say 

then,   knowing  the joint state of  the observable modules a.s.   implies we 

know the joint  state of the  repairable modules.    The decision problem  is 

 -"——~-~—    ■ ^.•^...—«^—^.-.-.    ■^--■■. ■ _^_—■fc^,»».. 



34 

to a.s. determine,   in minimum expected time,  the joint state of  the 

repairable modules by testing the observable modules.    Assume module    Q. 

requires time    tj i 0    to test,   I -  1   ,..,  q  .    For this model,  take 

y.-r Q f XIQ   j.   '  ■  '   .....  q    where    /Qj   .  T     )   is a typical 

observable module.    There are    2   A.'s  ,  one for each joint state of 

the repairable modules. 

E.    Computational  Experience 

The branch and bound algorithm and the dynamic programming solution 

to the first fault finding model   in Section B above were programmed   on 

•n IBM 360 (model  67) computer.    Briefly,  the problem is to determine 

the state of every component of a coherent system,   in minimum expected 

time.    Again we must remark that the problem Is specified by the joint 

distribution of component performance;  the coherent system only provides 

a framework In which to pose the problem. 

The cases  listed below are representative of those worked out. 

The distribution of component performance was nominal   Independence conditioned 

on the system being down (type 1) or conditioned on the system having just 

gone down (type 2).    Thus, given a    (k/n)    system Is down, there are at 

most    k - 1    working components; given  It just went down,  there are exactly 

k • 1 working components.   All Joint distributions were generated by a 

(k/n)    system, and a type (I or 2) of conditional distribution.    They are 

specified by    k/n ,  type In Figure 6.    These distributions are carefully 

detailed  In the  Introduction to Chapter 3.    Figure 6 gives a comparison 

of the two methods employed.    The column "positive states" gives the 

number of joint performances    x   with positive probability,   I.e.  for 

which   P(X ■ x} > 0 .    "Cycles" refer to the number of Iterations the 

branch and bound method made.    Some problems proved to be too large for 



35 

the branch and bound method to work in a reasonable length of time. 

Computation time,  in seconds 

joint positive dynamic branch 
tribution states programming and bound cycl 

2/3,1 k .10 .04 3 
3/3.1 7 .12 .08 5 

2 A.I 5 .69 .20 7 
2 A, 2 k .69 .34 11 
3A,I 11 .91 4.27 91 
3/M 6 .85 2.30 ^9 
VM 15 1.04 5^.65 319 
k/h,l k .7^ .39 11 

2/5.1 6 4.17 1.46 21 
2/5.2 5 4.17 2.65 36 
V5.I 26 7.16 not run 
V5,2 10 5.97 > 600 

2/6,1 7 26.67 10.79 60 
2/6,2 6 26.92 23.29 118 
6/6.2 6 27.50 24.68 111 

Comparison of Dynamic Programming versus Branch and Bound 

Figure 6 

,n 
The dynamic programming computation time grows roughly as 6 , 

where n  is the number of components. There is seme variation in 

computation time for various joint distributions with the same 

number of components, however the number of positive states seems to 

give a rough indication of this variation, fewer positive states 

leading to shorter computation times. 

Branch and bound computation times are seen to vary substantially, 

even for a fixed number of components. While in some cases this method 

was faster than dynamic programming by a factor of about 3, in other 

cases it was slower by several orders of magnitude.  If a specific 

problem was being solved many times over for different input data, some 

p~**~~ -    " 



36 

experience with both solution methods would be useful   in determining 

which one handles that problem best. 

One final  observation to be made   is that,  for this  specific 

problem,   it seems that the   largest problem either solution method could 

handle   in,   say   less than 30 minutes,  has eight or nine components. 

This may be a severe restriction on solving "real" problems. 



-.-  .   ...J " vr-.  ■L.^„-!.lM,.^.^Jtir   -.:■!*. 

37 

CHAPTER 3 

ANALYTICAL RESULTS FOR  (k/n)  SYSTEMS 

Introduction 

In this chapter we define several  fault finding models and obtain 

some analytical  results concerning them.    The framework is that of coherent 

systems,   introduced  In Chapter 2.    Chapter 3  is developed independently of 

Chapter  1. 

A.     Background 

The basic problem comes about by considering a coherent system whose 

components are subject to being tested.    The tests each require a known 

non-negative time to complete, and are performed sequentially until 

enough  information has been  learned.    What constitutes enough information 

depends on the goal of  the testing process. 

Each model   is specified by a coherent system    (C, cp)  , a joint 

distribution for the set of performance indicators      {X(c)  | c€ C} , a 

goal  for the testing process, either determining the state of every 

component, or determining the state of the system, and a criterion for 

comparing pol icies. 

It Is convenient to Index the components  In    C  ,  say   c.  ,  ...  , c    , 

letting   Y, ■ XCc.)    and    Y ■ (Y.  ,...,  Y ).    Our choice of a coherent 

system will be limited to a k-out-of-n system, hereafter written    (k/n)   . 

Recall that a    (k/n)  system Is one of n components which functions  If and 

only  If k or more of  Its components function.    In the above notation 

«(X)  -!<*>£   X(c) i k <->    £«    Y, » k .    In particular,    (l/n) 

systems are known as parallel  systems and    (n/n)    as series systems. 

While Independence Is not always an appropriate distribution for the 

random variables    (Y.    Y   }   ,  It does play a fundamental  role  in our 
i n 



I1-."!«!1.".1 ■llllJI'J!;l!l.La1.— 7-  ■:■■;■   ■ :    ■ - --    -■■   ■ "■■"" 

38 

models.     When we are concerned with determining the  system's state, 

independence   is assumed.    When we seek the state of all   the components, 

one of two distributions   is assumed.    The first  is obtained by assuming 

that  the components nominally operate   independently,  except  that we know 

the system is down  (not  functioning).    Hence  the actual   distribution  is 

independence conditioned on the  system being down.     The  second  is again 

nominally   independence.    We suppose all components begin service  in an 

operating  state and function   independently  for some  random  lifetime,  each 

with   its own distribution.     This process continues  until   the system fails, 

at which  time every component   is  frozen at   its current  state.    We suppose 

further  that no two components have positive probability of simultaneous 

failure.    We say the system has just gone down,  that   is,  has at  least  one 

failed conponent which,  when restored, will  bring  the system up again. 

For example, a series system which  is down has one or more failed components 

while a  series system that  has just gone down has exactly one failed 

component. 

The two criteria considered are mentioned in Chapter I, the expected 

time to complete the testing process and the probability that the testing 

is completed on or before  some deadline. 

A policy   is a rule which   indicates which component  should be tested 

next,  based on the results  of tests already made,  provided any further 

testing   is necessary.     In Chapter   1  policies were functions,  giving a 

component   to test or an  indication that testing could cease,  for every 

possible state of our knowledge about  the problem.    While  this formal 

representation was useful   in Chapter  I, a more   informal   (but equivalent) 

representation  is used here.     Namely,  a policy will   be a certain kind of 

directed graph.    Each node   is either a stop node,  meaning  the  testing 

process can cease upon reaching this point, or a test node,  meaning more 



■ 

39 

testing   is  necessary.     The stop nodes are  labeled    S   and have no arcs 

leaving them.    The test  nodes are  labeled    I,   I  £ i  £ n  ,   indicating 

component    c.     is  to be  tested at this Juncture, and have exac;ly  two 

arcs  leaving them.    One arc  is  labeled    0 ,  the other arc    I   ,  corres- 

ponding to the event  of  finding component    c.     failed or working 

respectively.     Each node has exactly one arc entering  it,  except a 

single source node corresponding to the beginning of the testing process. 

Figure  I   illustrates typical policies  for a  (2/3) system with several 

choices of a goal  and joint distribution.    The  forward orientation of 

each arc  is  downward. 

(a) (b) (c) 

(a) typical  policy for finding the state of all components of a 
(2/3)   system when the Joint distribution of component perfor- 
mance   is nominally  independence, conditioned on the system being 
down. 

(b) same as (a), except that the nominal distribution Is conditioned 
on the system having Just gone down. 

(c) typical policy for finding the system's state for a (2/3) system 
when the Joint distribution of component performance is indepen- 
dence. 

Figure  I 



40 

The reader should be able to verify that each node labeled  S 

really is a juncture at which testing can cease.  It should be clear how 

these graphs are intended to be used as policies. The component to be 

tested initially is indicated in the source node, for example c-  in 

policy (a) above.  Upon testing a component and finding it, Sciy failed, 

we proceed to the node connected to our present node by the arc labeled 

0 and stop or make a test as indicated by the node at our present 

position. In order to avoid useless complications, it is assumed that 

a policy does not test the same component more than once. Of course, 

this does not prevent two nodes from indicating a test of the same 

component, for example policy (c) of Figure I. These assumptions are 

also made In the policy definition of Chapter 1. 

Policies (a) and (b) of Figure I illustrate that in some instances, 

a policy can be specified by an ordering of the components. We will refer 

to policies which are specified by orderlngs of the components as sequen- 

tial policies. More precisely, a sequential pol icy is a policy TT for 

which there is an ordering a. ,.... a  with the property that TT begins 

by testing the component labeled a. , continuing sequentially to a, ,..., 

etc., until enough information has been learned so testing can stop, or 

until all components have bean tested, at which time testing can certainly 

caasa. The order In which components are tested does not depend on test 

outcomes. 

For some fault Finding models, every policy Is a sequential policy, 

(a) and (b) of Figure 1 for example. Including of course any optimal policy. 

On the other hand, not all policies are sequential, as shown by policy (c) 

of Figure 1. An interesting feature of each fault finding problem solved 

In Chapter 3 Is that each one has an optimal policy which Is sequential. 



mm—^*—*^*mmm '■,"  -   . l^i,Ji.l!JL"^5Hi5!5!aLli...-;— uuJimmmmmmKm 

B.    Finding the State of All  Components   in Minimum Expected Time 

The first  specific models treated   in this chapter have as  their 

criterion the expected time to complete the testing process.     This   is  the 

criterion for which the branch and  bound algorithm of Chapter   1   is devel- 

oped and   is  simply the expected value of the  total  testing  time   incurred. 

The total   testing time   is the sum of  the times for each  individual  test 

made. 

Consider  first  the problem of  finding the state of every component 

of a    (k/n)     system,  when the distribution of joint component  performance 

is   independence conditioned on the system being down.    Recall   that 

0    if component    c.   is  failed 
(1) Y.  = X(c.)  =    ? 

'1  if component c. is functioning, 1=1 ,..., n . 

Let 

(2) t. = time required to test component c. , 

(3) p. = probability (under nominal independence) that component c.  is 
functioning, ' 

(3a) q. » I - p. , and let 

(4) Pf«] be nominal independence of the random variables Y,   Y . 
In 

Then we have    P[Y. =  1} = p.   ,   i  =  I   ,...,  n  .     If    (C  ,  cp)   is  the    (k/n) 

system,   the distribution with respect  to which we seek to minimize the 

expected  testing time   is    Pf-   |  co(X)  • 0}  , equivalently    P["  |  JZY.  < k]  , 
i = l 

The only assumption made about the parameters   is 

(5) t. a 0    and 

(6) 0 < p. <  I   .   i «  1      n . 

We will   show below that  there   is an optimal  policy for  this problem 

which  is  sequential.     Furthermore,   the  ordering  to obtain  this  policy   is 

straightforward:   simply   index the components  so that    t.q./p.st.   .q.   ./p.   . 
Pi   "i      i + Pi + rKi + l 

IttMMnaiBMA** 



'— "■',  

42 

1=1 ,..., n-l , and test in the order c. ,..., c  until k-1 working 
I n 

components are encountered,  when testing can cease as any remaining 

components are almost  surely  failed,  or until  all  components have been 

tested.    This  result   Is proven by   induction on    n  ,   the number of 

components.    The substance of this  result   is   in the fact  that, after 

testing a component,   if   it   Is  failed we are faced with  the situation of 

a     (k/n-1)     system,  or  If  it   is  functioning,   the situation of a    (k-l/n-l) 

system,   for the remaining    n-l    components.    To say  this more precisely, 

let 

(7) T    ■ expected test  time  required of policy    IT ,  and  if    rr    begins 
^      by testing component    c.   , 

(8) T    (Y * 6) ■ expected  remaining testing  time required  of policy    TT 

after the   initial   test of    Y.   ,  given    Y.  = 6   , where 
6 • 0 or   1. ' ' 

Lemma   1;     Let    rr    be a policy for  finding the state of all  components 

In a     (k/n)     system,  given the system is down.    Let     1  < k < n    and 

suppose policy    TT    begins by  testing    c.   .    Then 

(9)     T^ - t.  + P{Y.  - 0  I   £   YJ  < k} yY.  = 0) 

PfY. -  1   |   E   Y.  < k] T  (Y    -  1)   . 
1 j-1    J 

For    6 ■• 0 or  I, the conditional  distribution 

n 

PC- 1 EY < 
j-1J 

k , Y. - 6} 

is the same distribution on {Y. j j / I , j » 1   n] as 

n 

P{- 1 £Y. < k - 6} . 
j-l J 

namely the one which results when components  [c. | j ?* i , j = 1 ,..,, n} 

form a (k - 6/n-l)  system, given the system is down.  In particular, 



^3 

T  (Y. ■ 6)     is the expected time to test this system,  using as a 

policy    TT(6)   , where    TT(6)  ■ the subgraph of    TT   beginning with the  node 

reached after    c.     is tested and    Y. ■ 6  ,  and all  nodes  reachable from 

It. 

Proof:  Equation (9) follows by conditioning on the outcome of the first 

test TT makes. To show the second assertion, let A be any event 

defined on the random variables (Y. | j ^ i , j « I ,..., n} . Then 

n n n 
KA   |   E   Y. < k  ,  Y. » 6} - P{A   |   2>j < k  ,  Y. - 6} - P(A| J>;< k- 6 } 

j-l     J ' j-i J ' j.l J 
JVI jfM 

by  independence of    Y.   ,..., Y      under    P{*3   .    The remaining assertion 

says that    T    (Y.  » 6)    can be thought of as  the expected time to use 

TT(6)   , a policy,  to test     {c.  | j # I, J ■ 1   ,...,  n}   as   if these 

componer.r«.  i'jr.-.ted a    (k-6/n-l)    system,  given  it  is down.    But  this 

follows because the conditional  distribution of performance  Indicators 

for the conponents     [c.   |  j »< I   ,  j  »  I   ,...,  n} ,  given     [Y.  =    6}  , 

is as shown above.// 

Proposition  I: 

Consider the problem of finding the state of all  components of a 

(k/n)  system  in minimum expected time,  given the system is down.     If the 

components are  indexed so that    tjqj/pj  ^ t•+)CI|+|/Pj+1   .   '"'      n  . 

then the  sequential  policy which tests    c.   ,..., c      until     k-1    working 

components are found or all components have been tested,   Is optimal. 

Proof:    We begin with showing the  result for    (l/n)    and    (n/n)  systems 

directly.     The case     (k/n)     Is proven by  induction on    n  . 

For    (l/n)   ,  or parallel systems, we see all components are a.s. 

failed,  so no tests are necessary. 

„r.^.,....r..  .  ^.....-.-.^M—^j... ^ jjgjg  



————T 

A4 

For  (n/n) , or series systems, there is only one situation in which 

any policy can stop short of testing all components, that is when the 

first n - 1  tests each reveal a working component.  In this instance, 

a policy can stop, since the one untested component is almost surely 

failed.  In any other circumstance, all components must be tested.  Hence, 

a policy TT , when c.  is the one component which might not be tested by 

TT , has 

T- Ltj " t P{Y - I , j / ! | £>: < n} 
11  j = l J   '   J j = l J 

n n 

• E1! -1. ( n p.u, / 0 - n P.)   . 
j-rJ     '  j^i J   ' j-i J 

Minimizing this quantity as     i    varies   is equivalent  to maximizing  t.q./p.   . 

For the sequential  policy we propose as optimal,     i  « n  .    Because of the 

assumed ordering,   it   is clear this policy   is optimal.     In fact,  any policy 

which does not  test    c       in the eventuality that    c,   ,..., c     .    are n l      n-1 

working is optimal. 

For (k/n)  systems in general, we proceed by induction on n . 

Basis:  (n a 2)    See above for proof of result when k = 1 or 2. 

Induction:  (n > 2) When k = 1 or k = n , appeal to the direct proof above. 

Suppose then that  1 < k < n . We appeal to Lemma I above and 

the hypothesis of the induction. Among those policies (sequen- 

tial or not) which begin by testing c. , none is better than 

the sequential policy rr.  given by  i, 1, 2,..., i - 1 , i + I, 

..., n . This is because for every policy rr which begins by 

testing c. , equation (9) holds; the quantities T (Y. = 0) and 

T (Y. * 1) are both minimized by the sequential policy n. , 
TT  I I 

due to the interpretation given them in Lemma I and the 

induction hypothesis. It now remains to show that it is 

optimal to test c.  first. Comparing the 



45 

sequential policy    n.1   given by  the sequence 

It   i» 2  ,...,   i-1,   i+I   ,...,  n , 

and the sequential  policy    n.   , we see for    k > 2   ,  both 

policies have the same value because each must make at 

least  two tests,  that   is,     T      = T      .     The case of    k = 2 
TT.1       n. 

i i 

is   illustrated by Figure 2.     Equations   (10)  and  (11)  are 

similar to equation  (9). 

TT. 

Figure 2 

(10) Tn>..t1  + t.  PCY^OIEY    <2} + 
i j»! J 

PCYJ  - 0  .  Y    - 0|   TV. < 2} T   ,(Y    = 0,   Y    = 0) 
j = l J i 

(11) T      - t. + t,   P{Y.  = 0 | X]Y. < 2} + 
"f ' ' j^l J 

n 
PfY.  = 0  ,  Y.   = 0  | ^Y.  < 2} T     (Y.  = 0, Y.   = 0) 

i -1 J 
TT.'   . 

The  last terms   in equation  (10)  and  (II)  are the same,   since 

policies    IT.    and    TT.    agree after two tests.     Hence    TT, 
• I i 

is better than    TT.   if 

•^ • „üai ...—■■  . >—^i  .; .-■  



A6 

t, (I - P{Y, = 0 I £YS <2}) > 0 

t. (I - P{Y. = 0 | E Y. < 2}) - 
1 j.] J 

n 

j«l J 

equivalently If t.q./p. S t.q,/p. . Since this is clearly 

satisfied for each i , we conclude n. is as good as n. , 

but then as we remarked above, the sequential policy n. 

given by  I   n is the best policy which tests c 
1 

first.     Hence    T      s T    i ^ "t       ,  showing that  of all 
TTi TTj n.    ' ^ 

policies which make at   least one  test,    n.     is as good as 

any.     Since any policy must make at   least one test,  we 

conclude  the sequential  policy    n.     is optimal.// 

This pleasing result does not continue to apply when we change 

the assumptions of  the model  slightly.     Let's consider the problem which 

is   identical   to the one above,  except  that  the distribution of  the perfor- 

mance   indicators   is  nominally   independence conditioned on the system having 

just gone down.     For     (k/n)    systems,  this   is just    P{* | 2J   Y.  = k -   1}  , 

j-l    J 

where again  the unconditional    ?[']     is   independence on the  random 

variables     fY,   ,...,  Y  }  .    Recall  we wish  to find the state of all 
I n 

components   In minimum expected  time. 

We can obtain,   in a  special  case,  a similar result  for     (k/n) 

systems.    The technique for proving these  results   is  the same as  for  the 

results obtained above.    For this  reason, we choose to sketch the proofs, 

omitting the  repetitious details.    The notation and assumptions of 

equations   (1)   through  (8)  continue to apply. 

Consider  first  the series  system of    n    components,   the    (n/n) 

system.     Since one conponent   is failed and  the  remainder working,  a.s., 



■■" 

47 

we see any  testing policy stops as soon as a failed component   is found, 

or    n-1    components are found to be  functioning.    For  this  reason, every 

policy   is   in fact a sequential  policy,  af>   illustrated   in Figure 3. 

Typical policy for series  system of    n    components,   given 

system just 

I        f •  m m 3      n      « 

system just went down.  a. ,..., a  is a permutation of 

Figure 3 

When we speak of a policy    TT    given by the sequence    a.    a     , 

we mean as   shown  in Figure 3.    Lemma   1  above has   its analogue here. 

Lemma 2;     Consider    TT ,  given by     1    n  ,  as a policy  for  finding  the 

state of all  components of a    (n/n)     system,  given  the system has just 

gone down.     Supposing    n = 2  , we have 

(12)    T    - t    +P[Y]  -  1   |£Y    - n -  1} yv,  =  1)   . 
j.)  J 

The conditional  distribution      Pf«   | 5ZY.  = n -  1   ,  Y    =  1]     is  the 

j"l J 1 same 

distribution on  fY, ..... Y } as  P{' j^Y. = n - 2] .  Hence 
Z n j=2 J 

^mammm^mmttmaataBammmm^summmm 



^48 

T     (Y,  =   I)     is  the expected  time  to use policy    n(Yl   =   I)     defined by 
TT   I I 

2   n , to test the components  [c- ,..., c } arranged in series, 

when this system has just gone down. 

Proof:  The method is the same as used in Lemma I.  Equation (12) results 

by conditioning on the results of the first test and realizing 

T (Y, = 0) = 0 .  The second assertion follows as easily.  Letting A be 

any event on the random variables (Y9 ,..., Y } , we have 
*      n 

n n 
P{A | SY. = n - I , Y, - 1} - P{A I £ Y. = n - 2} by independence of 

J-l 2 J 

of Y. ,..., Y  , under P{']   . This model has a simple rule for 

determining the optimal policy in a special case. 

Proposition 2; 

Consider the problem of finding the state of all components of a 

(n/n)  system in minimum expected time, given the system just went down. 

Suppose n 5 2 and also suppose there is an indexing of the components 

so that 

(13)  t.p./q. ^ ti+|P. + 1/q.+ 1 ,1 = 1   n , and  t^ ^ tn 

Then the policy given by the sequence  1 ,..., n is optimal. 

Proof: The proof is by induction on n . 

Basis:  (n-2)  Since any policy makes exactly one test, the optimal policy 

will test the component with shortest test time, namely c. . 

(Notice we are only using t. s t? .) 

Induction:  (n > 2) The argument proceeds as in proposition 1.  Comparing 

policy IT. given by  1, i, 2   i-1, i + 1 ,..., n , and 

policy TT. given by  i, 1, 2 ,..., i-1, i+1   n , 



^9 

we see    T    i    ^ T        <=>    t.p./q,   ^ t.p./q.   .    The policy    TT, 
TT. 17. I    )    ^1 irl        I r I 

satisfies  T  ^ T , , using iemma 2 and the hypothesis of 
TT,     IT, 

of the induction.  It follows TT  is optimal, because 

T  s T   and  TT.  !• the best policy which begins by 
TT, TT. I 

testing    c.   .// 

The    (2/n)     system has a  similar  result as just  obtained  for  the 

series case.     For  the     (2/n)     system,   the  random variables     [Y.   ,...,   Y   } 

are  nominally   independent,   conditioned on     ^ Y.   =   1  or Y.  =   1   for   one     i   . 
1=1   ' ' 

Every policy   is again sequential,   stopping as  soon as a working component 

's  found or     n-1    components have been  tested.     Consider the   random vari- 

i i i 
ablas      Y,   ,...,   Y     1    where    Y.  =   1   - y.   .     These   random variables   have 

1 n   J i i 

the joint distribution of  performance   indicators  for a series  system which 

has just  gone down.     Furthermore,  since  knowing    Y     is equivalent   to 

knowing    Y'   ,  every pol icy  for  the    Y    process   is equivalent   to a  pol Icy 

for  the    Y1     process  and  conversely.     Since proposition 2   Indicates a 

special  case  for which the  optimal  policy   is easily  obtained  for  the    Y' 

process, we are   lead  to conclude 

Proposition 3: 

Consider the problem of determining  the state  of every  component   in a 

(2/n)     system which has just  gone down.     If  the components are   Indexed  so 

that 

(\k)     t.q./p.   ^ t.   .q.   ,/p.   .,1=1       n -   1   ,   and    t     ,   ^ t     . 

then  the policy which tests   in order of    c.   ,...,   c      until  a working 
i      n 

component is found, or c  ,  has been tested, is optimal.// 
n- l 

Fora     (k/n)     system   in general,   not all   policies  are sequentia1, 

and   indeed sometimes  no sequential  policy   is  optima!.     Consider  the 

smammmmmmsmmmuatuaimmm 



50 

example illustrated by Figure k 

1  ' s pi tjP/q, MVPl 

1 1 .9 9. .111 

2 10 .9 90. 1.11     1 
3 10 .95 190. .526 

k 100 .95 1900. 5.26 

Data table for OA) system 

Policy n 

Model is finding state of all components in minimum 
expected time, given system just went down. No 
sequential policy is optimal. 

Figure k 

We will  show that    TT    is better than any sequential  policy,  and 

in fact,   that    TT    is optimal.    Firstly,  since the general   form of    rr 

implies    T    ä 21   ,    TT    is better  than any policy  (sequential  or not) which 

begins  by  testing    c,   .     Lemma   1   has   its analogue for  this model,  and   is 

proven just as  lemma   1   is.     Briefly,   it says  that   if the first test  finds 

a failed component,  then the remaining components   look like a    (k/n-1) 



—— 

51 

system, while  if  the first  component  tested   is working,  the  remaining 

components   look  like a     (k-l/n-I)    system.     Using  this, along with 

propositions 2 and 3. we see that among all  policies,  sequential  or  not, 

which begin by testing    c.   ,  none   is  better than the sequential policy 

given by 2,   I,  3.  ^,  because 

tjPj/q,  ^ «^/^  s t^k/%  '   tlq|/pl   S ^VB S ^V^ 

and t- s t.   .    The same  reasoning shows  that  the  sequential  policy given 

by 3,  11 2,  4,   is best among all  policies which begin by testing    c,   . 

However,  the form of any sequential policy   is such  that the order of the 

first two tests can be reversed without changing the value of the policy. 

It  follows  that  these two sequential  policies use  the same time as the 

sequential  policies given  by  1,2,  3,  ^,  and  I,  3,  2, k,  respectively. 

Now,  again using the reasoning above,   the    rr    illustrated  in Figure k 

is as  good as any which begins by  testing    c.   .    Let    TT'    and    n''     be 

the sequential  policies  given by   1,   2,  3,  ^  and   I,  3,  2, k.     It will 

follow that    rr    is ootimal   and that no sequential  policy  is optimal, 

if    T    <T  ,    and    T    < T  ,,   .    The following calculations are straight- 
n       TT1 TT        TT' ' * 3 

forward. 

k 
T^-  11  + 10 (I  - q^ p^ - p)q2 p3q4)  / Pr#I>. = 2] 

Trf  »  11  +  10   (1   -  q]q2 p^ - PJP2  q^)   / pff'y.  = 2] 
i = |   ' 

if 
!>«  II  +  10  (I   -  q)p2 q3p^ -  p)q2 p^)   / ?[£>.  =  2} 

i = l 

TTT < Tn'  <*> p3q3 > ^^2 

^  <Tnll<»>P3q3 >p2/q2 



52 

There is a special case, motivated by previous results, in which a 

sequential policy is easily obtained and is optimal. 

Proposit ion k; 

Consider the problem of determining the state of every component in 

a  (k/n)  system which has just gone down.  If the components are indexed 

so that 

(15)  t.p./q. ^ t| + )p1 + 1/qi+1 . t.q./p. ^ t i+1qI + |/P .+ 1 .1-1  n- 1 . 

Vl S 'n  ' 

then the sequential policy given by the ordering I ,..., n is optimal. 

(That is, test in the order c.   c  until  k-1 working or n-k+l 

failed components are found, at which time testing can stop.) 

Proof;  The method follows lemma I and proposition I. Analogous to 

lemma 1, we see upon making the first test, the remaining n-1 components 

appear to form a (k/n-l)  or  (k-l/n-l)  system, according as the first 

test finds a failed or working component, when 2 < k < n . The argu- 

ment proceeds exactly as proposition 1, by induction on n . The 

boundary case of (l/n)  is simple as no tests are necessary; all 

components are a.s. failed. The result for (2/n) and (n/n)  systems 

is contained in propositions 3 and 2 respectively.  To complete the 

induction step, we only need to show T ■ ^ T   where n.'  is the 
'      ' TT. '   TT. I 

i     i 

sequential policy given by  the ordering     I,   i,   2   ,...,   i-l,   i+l      n   , 

and    TT,     is given by     i,   1,   2   ,...,   1-1,   i+l   ,...,   n  .     But when 

2 < k < n  , at   least  two tests are required of any policy,   so 

i i 

C.  Models Seeking the System's State in Minimum Expected Time 

For the problem of determining the state of a  (k/n)  system, it is 



53 
assumed  that  the components operate   independently.     Clearly   it would  not 

be reasonable  to condition on the system being down or having just gone 

down,  since then  no tests would ever be made.     Notice also that   indepen- 

dence  is equally   inappropriate when seeking the state of every component, 

because such a distribution would cause every policy  to test every 

component.     In this section, an optimal  policy minimizes the expected 

testing  time used.     The notation and assumptions of equations   (1)   through 

(8)  continue to apply. 

The form of  the   results and the method of proof are analogous  to the 

results obtained   in the previous section.     For the    (l/n)   ,  or parallel 

system,  every policy   is  sequential  and an optimal  order  in which  to test 

is    c.   ,...,  c      whenever    t./q.   s t.   ,/q.   .   ,   i  =  1   ,...,  n -   1   .     For the In i  ^i i+l   ^i+l 

(n/n)   ,  or series  system,  again every policy   is  sequential  and an optimal 

order  in which  to test   is    c,   ,..., c      whenever    t./p.  s t.   ./p.   ,   , In i  ri i+l  ri+l 

i =  1   ,...,  n -   1   .    Similar to the  last  model  of the previous  section,  for 

the    (k/n)    systems   in general,  sometimes  no sequential  policy   is  optimal. 

If the  indexing  can be performed so that  both    t,/q.  s t.   ./q.   .     and 3 r ii i+l     i+l 

t./p.  ^ t.   ./p.   .   ,   i  =  1   ,...,  n -  I   ,   then the sequential  policy which 

tests   in the order c.   ,...,  c      stopping as  soon as    k   working or    n-k+1 

failed components  are  found,   is  optimal. 

D.    Models with a  Deadline Criterion 

This  section deals with a criterion mentioned only briefly   in  Chapter  1, 

the deadline criterion.    To work with this  criterion,   let 

(16) T    » random time to complete testing,   using policy    TT . 

Relating this notation  to previous notation, we have 

(17) TnsE^- 

The deadline criterion has a non-negative  parameter  t   ,  the deadline;  an 

optimal  policy  seeks  to maximize  the probability  that     T    ^ t   . 
TT 



wimi.iniMiiw.t ..' Li-'ji'i- .  

54 

The primary tool of the following results is contained in [Kadane, 

1968] as his theorem I, a variant of the Neyman-Pearson lemma. This 

result is 

Theorem I: 

Let (p.} and {t.} be arbitrary non-negative sequences such that 

£ p. < 00 . Let X be the class of sequences fx.} such that 
i  ' ' 

0 ^ x, s I for ail  I and let b -  £  t. . If 0 < t < b , then 
' i5Pi>0  ' 

the maximum of 

(18) Exp 
I    '   ' 

subject to 

(19) Ex.tj s t 

and    fx.} € X     is attained,  and  it occurs when and only when 

(20) ;l 

1        if   p. > r t. 

0        if   p, < r tj 

for some    r  ,    0 < r < • ,  and 

(21) Ex t. - t 
I     '   ' 

The set of    r's    satisfying    (20)   is the same for each optimal     {x.} 

and   is a single point or a closed  interval.// 

Kadane uses this  result  in his treatment of  the ball-in-the-box 

problem with a budget ceiling.    Briefly,   this problem consists of 

searching a set of boxes  for a hidden ball, while admitting the possi- 

bility of a search overlooking the ball.    An optimal  policy maximes  the 

probability of finding the ball without exceeding a budget ceiling. 



  

55 

The first mode], tested in detail, will serve to illustrate how 

theorem I is used to obtain analogous results for the remaining models. 

The problem is to find the state of all components of a (2/n) system 

for which the distribution of joint performance is nominal independence 

conditioned on the system being down. An optimal policy seeks to maxi- 

mize the probability of having completed the testing process on or before 

the deadline t . Notice every policy is a sequential policy. Components 

are tested in some prearranged order until a working component is found, 

or all components have been tested. 

The assumptions and notational conventions of equations (1) through 

(6) will continue to apply here.  In addition, we will require that the 

deadline t be small enough to affect us, namely that 

(22) Zt. >t 

Suppose policy TT IS given by the sequence 1   n . Then, for  k 

defined by 

(23) ost- S'^vi 
we have 

n n 
{2k)    P[T    * t I £ Y. - 1} - P{Y. -  1  for some  i - 1   ,...,  k | ^ Y. s l] 

11 i-l     ' J i-l   ' 

We see the problem is equivalent to finding an  indexing of the components 

k 
is a maximum,   subject to    53   t.  ^ t   .    While theorem 1  does  not address 

j-1    J 



!LJ il.J... 

56 

Itself to this problem exactly,  the situations are similar.    We will  use 

theorem I   in two ways  to make statements about our problem.    We remark 

first that,   in using theorem I,  the finiteness of our model   is no 

restriction.    Also,  there Is always an optimal solution    {x.},   ,      to 

the problem posed   in theorem I with    0 < x.  < I    for at most one     i   .. 

The first application of theorem I provides a policy with a bound on 

the error  incurred   in using  it rather than an optimal policy.    Specifically, 

Proposition 5; 

Consider the problem of finding the state of every component of a 

(2/n)    system,  given the system  is down,  prior to the deadline    t   . 

Index the components so that 

(25) trVi  S ti+lql+l/pl+l '  "  '      " " ' 

and let k be defined as in equation (23) above. Then, for the policy 

given by the sequence 1 ,..., n , equation (24) holds, and further, if 

TT'     is any optimal  policy, we have 

(26) 0 ^ PCT      i t  I   !>. * 1} - P(T    ^ t   I   2>J ^ 1} 
i«l i»l 

where 
k n n 

(27) f - (t -   Etj)  / t.   .    and    c -   £   p     I!    q   +   n    q. 
i-1   ' K+l j-l    J   Mj    '      i-I    ' 

k 
In particular,   if    f - 0 , equivalently  If     ^t. ■ t  , then    TT    is 

i-I   ' 

optimal. 



-   •.ifmmnmimmmmmmmam 

57 

Proof:    Apply theorem 1,  replacing    p.    by   p,/ []   ^\\ I c  , 

I -  1   ,..-,   n .    Then for 

!l i < k+ I 

f I = k + 1 

0 I > k + I 

{x.}._.       is an optimal  solution.    A value of    r    generating this 

solution   is      ft^, //pk+1  l    ü.      ^i) / c) *    E<1uation  (26)  now 

follows by  realizing that an optimal  policy to the fault  finding problem 

also provides a solution, although not necessarily optimal,   to the 

problem posed by theorem  1.     The value of the optimal   solution  is 

n 
P{T ^t I £Y. ^ 1) + right hand side of (26).// 

We remark that the fault finding problem for this model is well known 

as the knapsack problem and as such, there are techniques available for 

solving it.  Proposition 5 merely provides quick access to a sub-optimal 

policy and gives a bound on how much better any optimal policy might be. 

The form of this bound suggests how the model might be expanded to allow 

a partial test while making suitable assumptions about the usefulness of 

such a test, and how theorem 1 would be used to obtain an optimal solution 

in this case. 

In order to obtain such a model to which theorem 1 would apply, 

assume one test can be conducted for any length of time up to the nominal 

time necessary for a complete test. Also assume, for 0 £ f £ 1, and 

I - I ,..-, n , 

(29) Pfa partial test of c. , lasting ft., determines the state of c.]»f , 

and the indicator of the event mentioned in equation (29) is independent 

of the joint state of the components, (Y| ,..., Y ) . Now a policy must 



-   »JIJL..   ' 

58 

also  indicate which one if any,  of   its  tests  is to be a partial  test, 

and how  long  this test  is to last.     Because any tests concluded after 

the deadline    t    are  irrelevant,  as   is  the order  in which tests concluded 

prior to    t    are performed,  there  is no  loss of generality  in requiring 

the partial   test to begin just after  the  last complete test prior to    t  , 

and to end on or before    t  .    Let    TT    be the policy given by    a.    a   , 

with    d    the duration of the partial   test.    Suppose there   Is only time 

for at most    k    complete tests prior  to    t  , equlvalently that 

k 
OSt -  Ft     <t 

l-l ^        ak+l 

k 
Then, if d > 0 , the partial test Is on c    and £ t  + d S t . 

ak+l     l-l al 

Further, for f = d/t    we have when k < n - 1 , 
ak+l 

n 
(30) P[T    S t | X)Y. Si}» P{a working component is detected prior to 

n l-l ' 

t I  I>. ^ '} - Lpa   / n qa \ / c + f pa   n    q, / C , 
i-1   ' l-l al \}t\ ajy ak+l    j>k+l    J 

and when k ■ n -  1   , 

n 
(31) PCT- St   J   ^Y.  sl]Bp{a working component   is detected or all 

^      l-l ' 
n 

components are found failed prior to t | ^ Y. S 1} 
l-l     ' 

-   E   Pa   / n ^a V c + f  (pa        n qi +   n <!:   1 / c  , 
l-l     ai ^j»*l a}j \an    jVn J      j-1 J   / 

where the normalizing constant    c -   ^p.    H 9- +   [T   q.    as above.    The 
Pi ' jVi J  j«l J 

reason for the extra term in equation (31) is because when k - n - 1 , a 

successful partial test will tell If not already known, the state of all 

components.  This case Is easily handled directly, since (31) shows the 



— —— 

59 

probability that a policy   is successful depends only on the last  index 

a    ;  n-l comparisons determine the optimal choice.    When    k< n - I   , 

it   is clear theorem I applies directly, giving 

Proposition 6: 

For the problem of finding the state of every component of a    (2/n) 

system,  given the system  is down, prior to the deadline    t  , when a 

partial  test  is allowed,   index the components as   in  (25),  a      let    k 

be defined by (23).     If    k < n - I   ,  then for    n   given by    I  ,...,  n  , 

with a partial test of    c.   .     lasting    t -   Vt.   ,    TT    is optimal.// 
1-1 

Let's consider the    (2/n)    system when the distribution of component 

performance  is  independence conditioned on the system having just gone 

down.    Again every policy  is  sequential.    Further,  every policy makes at 

most    n - I    tests before stopping,  so to have the deadline effective, 

we wi 11 assume 

n 
E 
i-i 

in  lieu of (22).    Propositions 5 and 6 have their analogue here.    The 

proofs are omitted. 

(32) 
11 

£t. - t. > t , j - I ,..., n , 

Proposition 7; 

Consider the problem of finding the state of every component of a 

(2/n) system, given the system just went down, prior to the deadline t 

Index the components so that (25) holds, and let k be defined by (23). 

Then for TT given by the sequence I ,..., n , 

(33)    Pfr   St j  EY   - 1} - EPJ 
" l-l  ' M   ' 

In qA / EP: n 
\i*\J/    i-i ' j^i 

and   if    n1   is any optimal  policy, we have 

"i ■ 



^■" 

60 

(3*0   o s PCT. s t I  EY. - 1} - PCT   s t 1  E Y. - 1} 

-f pk+l( 
n   M7^ pl   n   q, 

k 

where    f - (t -   £  t. \   / t.+1     '     
In Particular.   If     E   t,  - t . 

•(• 

k 
I 
1-1 

then n is optimal.// 

Similarly we have 

Proposition 8: 

For the problem of finding the state of every component of a (2/n) 

system, given the system is down, prior to the deadline t , when a partial 

test is allowed, index the components as in (25), and let k be defined 

by (23).  If k < n - 2 , then for n given by 1 ,..., n , with a 

k 
partial test of c. . lasting t - y^t. , TT is optimal.// 

l-l 

We will  treat the series,  that   is    (n/n)    system only briefly.    Notice 

that   if    V.   ,..., Y     have the joint distribution for a series system, 

given the system just   went   down,  then for   Y.-l-Y.   ,   1 ■ 1  ,..., n , 

the Y*  variables have the joint distribution of a    (2/n)     system,  given 

the system just went down.    This   is the same transformation used  in 

Section B above for the same purpose.    It allows us to conclude that for 

a    (n/n)     system, given the system just went down.   Propositions 7 and 8 

hold, with the  Interpretation that 

(35) P{Y. -  1} - qj       and      Pj - 1  - qj   . 

The problem of finding the system's state for series or parallel 

systems, when the components operate  independently,   is treated just as 

the above models.    One application of theorem 1 yields a sub-optimal 

policy and a bound on how much better an optimal  policy might be, while 



'■:•':...—;i :-': ..'i.-^'.iMiw 
1 ' '  ~  

61 

the second application involves the concept of a partial test, and an 

optima] policy in this case. 

Consider first the series system of n components. To find the 

system's state, one must test until a working component Is located, or 

all components have been tested, so every policy is sequential. To 

make the deadline effective, it is assumed (22) holds, that is, there is 

not enough time to test all the components prior to t . Let policy TT 

be given by a. ,..., a  , and let k denote the maximum number of 

tests TT can complete prior to t . Then 

(36) 
k        k 

P{T s t) - 1 - n pa  and  £ t  St. 
j-l aj     M ai 

TT 

The problem of finding a n which maximizes (36) is seen to be equivalent 

to seeking an indexing of the components which maximizes 

(P,) 

subject to J3 t. S t 
i-1 

Theorem 1, used here just as In proposition 5, 

yields 

Proposition 9' 

Consider the problem of finding the system's state for a series system 

of    n    Independent components, prior to a deadline    t  .    Index the com- 

ponents so that 

(37)    tjZ-Ln (p.)  S t,+]/-Ln(pi+))   ,1-1   .....  n - I  . 

Let  the policy    TT    test  In the order of     1   ,...,  n  , and  let    n'     be any 

optimal pol Icy.    Then 

(38)    0 5 P^,   St}- PCT^ S t} i (jV^'-'-w')- 



miwmimmB~'^^*rm<s'f;"      .      ..      "■  ... -.x 

62 

where 
k 

(39) 0* t -  D   t, <t 

and 

(^o) f - (t - E t, j / t 
k+l    ' 

In particular, if f « 0 , then TT is optimal. 

The second use of theorem 1 involves the concept of a partial test, 

however here the assumptions concerning such a test differ from those made 

above. The assumption of (29) is replaced by, for 0 S f ^ 1 and 

i = 1 ,..., n , 

ik\)    Pia  partial test of c. , lasting t. , determines the 

state of Cj] - (pj)11'1  , 

and,  as before,  the  indicator of  the event mentioned   in (41)   is  independent 

of the joint state of the components    (Y.   ,...,  Y ).     It  follows that,   if 

k < n -  1   ,  P{testing    c.   ,...,  c.   ,  then a partial  test of    ck+j   , 

/ k       \ f 
lasting    ft.   ,   , determines  the system's state} =  1   -j  n   PjpPk+P     ' 

Using the same technique as above, we have 

Proposition  10: 

For the problem of finding the system's state of a    n    component 

series system, with  independent components,  prior to the deadline    t  , 

when a partial  test   is allowed,   index the components as  in  (37), and  let 

k    be defined by  (39).     If    k < n - 1   ,  then for    rr    given by    1   ,...,  n  , 
k 

with a partial  test of    c.,     lasting    t -   J^:   »    "    's opt'"13'« 

The case of a parallel  system is handled by  the transformation 

Y.  ■ 1   - Y.    as was done above.    The conclusion  is  that propositions 9 and 
ii 

10 hold for parallel   systems,  provided    p.     is   interpreted as    P[Y.  = 0}  . 



63 

SUMMARY 

Chapter  1  deals with a class of combinatorial problems  called 

"decision problems."    We are given    n    binary random variables and a 

function of the vector of random variables.    The object   is  to determine 

the value of this function by successively testing the  random variables 

to leern their vilue, and then to stop when enough  information   is  known 

to  Infer almost  surely the function's value.     Each random variable       — 

requires some  known time        test; an optimal  testing policy determines 

the function's value  in minimum expected time. 

Two solutions are proposed, a branch and bound solution and a 

dynamic programming solution.    The  functional  equation arising from 

dynamic programming  requires    3      evaluations.    However,  the usual  bonus 

(in dynamic programming) or having  solved the original  problem for every 

possible   initial  state occurs here,  and so we have really solved a bigger 

problem. 

The branch and bound solution first partitions the set of all 

policies   into classes.    Then  it computes a  lower bound on the value of 

a policy over policies   in each specific class.    The class with the smallest 

lower bound   is  itself partitioned.     The algorithm terminates when a class 

containing essentially one policy   Is chosen for partitioning,   since  for 

such classes,   the lower bound   is   In fact equal  to the value of  that 

policy.    Since the value of the policy chosen this way  is a   lower bound 

on the value of every other policy,   It  is optimal.    For the solution 

presented,  the lower bounds are computed by adding to bounds previously 

computed,   reducing some of the computational  complexity.    Also,   formulas 

are given  for computing an upper  bound on the value of an optimal   policy. 



^w 

64 

Using this, some classes of policies can be excluded directly, whenever 

their lower bound exceeds the upper bound, reducing some of the storage 

used by the algorithm. 

Another criterion, the probability that a policy completes its 

testing prior to some deadline, is also discussed briefly. 

Chapter 2 introduces coherent systems and gives some fault finding 

problems for them which can be handled by the methods of Chapter 1, for 

example, finding the state (functioning or failing) of every component, 

or finding the state of the system.  Both algorithms of Chapter 1 were 

programmed for a computer to solve the problem of finding the state of 

each component of the system. A comparison of the computation time 

used by both methods on some problems is included.  It can be seen that 

neither method is uniformly better than the other one for every problem. 

While branch and bound seems to be largely unpredictable, average compu- 

tation time for dynamic pro« ramming grew roughly as 6 . Since the 

functional equation was evaluated 3  times, it appears that the time 

to evaluate this equation was proportional to 2 . 

The final chapter contains a few of the models from Chapter 2 

which could be treated analytically. The coherent system in every case 

is a  (k/n) system, that being one which functions if and only if k or 

more of its n components function. The problems of determining the 

system's state when the components operate independently, and of deter- 

mining the state of all components when we condition on the system being 

down or having Just gone down, are discussed. When an optimal policy can 

be identified, it turns out to be a sequential policy, i.e., one for which 

the components are tested in a predetermined order until testing can 

cea »e. 



65 

BIBLIOGRAPHY 

Barlow, Richard E.  and Proschan,  Frank, Mathematical Theory of Reliabflity. 
196s» John Wiley & Sons, I.e. 

Birnbaum, Z.U.  and Esary, J.D., "Modules of Coherent Binary Systems", 
J.  Soc.   Indust.  Appl. Math.. Vol.   13, No.   2, June I965,  W*-kSZ. 

Birnbaum, Z.W., Esary, J.D. and Marshall, A.W., "A Stochastic Characteri- 
zation of Wear-Out for Components and Systems", Annals of Math.   Stat.. 
Vol.  37, No. «♦, August 1966, 816-825. 

Birnbaum, Z.W., Esary, J.D. and Saunders, S.C., "Multi-Component Systems 
and Structures and Their Reliability", Technomet rics. Vol.   3i No.   I, 
February 1S61, 55-77. 

Butterworth, R.W., "Modules of Coherent Systems and Their Relationship 
to Blocking Systems", Operations Research Center Report, University 
of California,  Berkeley. May 1969. 

Esary, J.D. and Proschan,  F., "Coherent Structures of Non-Identical   Com- 
ponents", Technometrics. Vol.   5, No.  2, May I963,  191-209. 

Esary, J.H., Proschan, F.  and Walkup, "A Multivariate Notion of Association, 
With a Reliabi1ity Appl ication", Boeing Scientific Research Labora- 
tories Document 01-82-0567, October  1966. 

Fulkerson, O.R. , '^Networks, Frames, Blocking  Systems", Mathematics of   the 
Decision Sciences, Lectures  in Applied Mathematics, Vol.   11, Amer. 
Math.  Soc.   (1968). 

Kadane, Joseph B.,  "Discrete Search and the Neyman-Pearson Lemma", Jour. 
Math. Anal,  and Appl. . Vol.   22,   1968,  156-171. 

Reinwald,  Lewis T.  and Soland, Richard M., "Conversion of Limited-Entry 
Decision Tables  to Optimal  Computer Programs I:    Minimum Average 
Processing Time", Jour. Assoc.  Comp.  Mach.. Vol.   13. NO.   3. July 
1966., 339-358. 

Reinwald, Lewis T.  and Soland, Richard M., "Conversion of Limited-Entry 
Decision Tables  to Optimal  Computer Programs II:    Minimum Storage 
Requirement",  Jour.  Assoc.  Comp.  Mach..  Vol.   ]k, No.  k, October 
1967; 7^2-755. ~   —-  — 



1  ■ ■ 

Unclassified 
Srcuntv damnification 

DOCUMENT CONTROL DATA -R&D 
fSci'urily  r/a*it'irÄfion of title.   bi'Jv of nhstr.icl and Ittdvxmti ,liinutation wust be entefvd whvn the ureraff reptirt is ftitmified) 

ORIGINATING  ACTIVITV  (Corporate muthur) 

University of  California,  Berkeley 

i«. BEPORT   SECURI TV    CLASSIf-IC A TION 

Unclassified 
26.   CROUP 

]    REPORT   TITLE 

A BRANCH-AND-BOUND METHOD FOR FAULT FINDING 

4   DESCRIPTIVE NO TES ("TVp* of report «nd.incfuaive daresj 

Research Report 
s   AUTHORISI (First name, middle inttiml, tmst name) 

Richard W.   Butterworth 

HEPOR T   DA TE 

August 1969 
7a.   TOTAL NO.  OF PACES 

65 
7b.   NO.   OF   REFS 

11 
«a     CONTRACT   OR   GRANT   NO. M.  ORICINATOR'S  REPORT NUMBER(S) 

GK-1684 
6.   PROJEC T NO 

ORC 69-21 

•6. OTHER REPOR T NOISI (Any other numbers that may be malfned 
Ihlt report) 

10     DISTRIBUTION   STATEMENT 

This document has been approved for public release and sale;   its distribution is 
unlimited. 

n SUPPLEMENTäR- NOTES    Also supported by the 
U.  S.  Army Research Office-Durham under 
Contract DA-31-12A-ARO-D-331. v 

12     SPONSORING  M1L1 TARY   ACTIVITY 

NSF-GK-168A-Shephard, The National 
Science Foundation 
Washington, P.C. 20550  

13     ABSTRACT 

SEE ABSTRACT. 

DD.F°oR:.81473   (PAGE i) Unclassified 
S/N   OlOt-«07-fiRt1 Security Ctassifirallon 



Unclassified 
Security Clüisifitation 

KEY   MONOt 
ROLE *OL E «T 

Branch and Bound 

Fault Finding 

Coherent Systems 

DD,Fr..1473 «BACK) 
S/N   0101-«OT-tgn 

Unclassified 
Security Ctattification »-31*09 

L »J-^.i-«,-—.l^-^«- —I     "-      " 


